A bandgap voltage reference is presented with a piecewise linear compensating circuit in order to reduce the temperature coefficient.The basic principle is to divide the whole operating temperature range into some su...A bandgap voltage reference is presented with a piecewise linear compensating circuit in order to reduce the temperature coefficient.The basic principle is to divide the whole operating temperature range into some sub ranges.At different temperature sub ranges the bandgap reference can be compensated by different linear functions.Since the temperature sub range is much narrower than the whole range,the compensation error can be reduced significantly.Theoretically,the precision can be improved unlimitedly if the sub ranges are narrow enough.In the given example,with only three temperature sub ranges,the temperature coefficient of a conventional bandgap reference drops from 1 5×10 -5 /℃ to 2×10 -6 /℃ over the -40℃ to 120℃ temperature range.展开更多
This paper presents a fully on-chip NMOS low-dropout regulator(LDO) for portable applications with quasi floating gate pass element and fast transient response.The quasi floating gate structure makes the gate of the...This paper presents a fully on-chip NMOS low-dropout regulator(LDO) for portable applications with quasi floating gate pass element and fast transient response.The quasi floating gate structure makes the gate of the NMOS transistor only periodically charged or refreshed by the charge pump,which allows the charge pump to be a small economical circuit with small silicon area.In addition,a variable reference circuit is introduced enlarging the dynamic range of error amplifier during load transient.The proposed LDO has been implemented in a 0.35 μm BCD process.From experimental results,the regulator can operate with a minimum dropout voltage of 250 mV at a maximum 1 A load and Iq of 395 μA.Under full-range load current step,the voltage undershoot and overshoot of the proposed LDO are reduced to 50 and 26 mV,respectively.展开更多
A single lithium-ion battery protection circuit with high reliability and low power consumption is proposed. The protection circuit has high reliability because the voltage and current of the battery are controlled in...A single lithium-ion battery protection circuit with high reliability and low power consumption is proposed. The protection circuit has high reliability because the voltage and current of the battery are controlled in a safe range. The protection circuit can immediately activate a protective function when the voltage and current of the battery are beyond the safe range. In order to reduce the circuit's power consumption, a sleep state control circuit is developed. Additionally, the output frequency of the ring oscillation can be adjusted continuously and precisely by the charging capacitors and the constant-current source. The proposed protection circuit is fabricated in a 0.5 μm mixed-signal CMOS process. The measured reference voltage is 1.19 V, the overvoltage is 4.2 V and the undervoltage is 2.2 V. The total power is about 9 μW.展开更多
文摘A bandgap voltage reference is presented with a piecewise linear compensating circuit in order to reduce the temperature coefficient.The basic principle is to divide the whole operating temperature range into some sub ranges.At different temperature sub ranges the bandgap reference can be compensated by different linear functions.Since the temperature sub range is much narrower than the whole range,the compensation error can be reduced significantly.Theoretically,the precision can be improved unlimitedly if the sub ranges are narrow enough.In the given example,with only three temperature sub ranges,the temperature coefficient of a conventional bandgap reference drops from 1 5×10 -5 /℃ to 2×10 -6 /℃ over the -40℃ to 120℃ temperature range.
文摘This paper presents a fully on-chip NMOS low-dropout regulator(LDO) for portable applications with quasi floating gate pass element and fast transient response.The quasi floating gate structure makes the gate of the NMOS transistor only periodically charged or refreshed by the charge pump,which allows the charge pump to be a small economical circuit with small silicon area.In addition,a variable reference circuit is introduced enlarging the dynamic range of error amplifier during load transient.The proposed LDO has been implemented in a 0.35 μm BCD process.From experimental results,the regulator can operate with a minimum dropout voltage of 250 mV at a maximum 1 A load and Iq of 395 μA.Under full-range load current step,the voltage undershoot and overshoot of the proposed LDO are reduced to 50 and 26 mV,respectively.
基金supported by the National Natural Science Foundation of China(No.41274047)the Natural Science Foundation of Jiangsu Province(No.BK2012639)+1 种基金the Science and Technology Enterprises in Jiangsu Province Technology Innovation Fund(No.BC2012121)the Changzhou Science and Technology Support(Industrial)Project(No.CE20120074)
文摘A single lithium-ion battery protection circuit with high reliability and low power consumption is proposed. The protection circuit has high reliability because the voltage and current of the battery are controlled in a safe range. The protection circuit can immediately activate a protective function when the voltage and current of the battery are beyond the safe range. In order to reduce the circuit's power consumption, a sleep state control circuit is developed. Additionally, the output frequency of the ring oscillation can be adjusted continuously and precisely by the charging capacitors and the constant-current source. The proposed protection circuit is fabricated in a 0.5 μm mixed-signal CMOS process. The measured reference voltage is 1.19 V, the overvoltage is 4.2 V and the undervoltage is 2.2 V. The total power is about 9 μW.