The article describes an electronic database of selected marine piston combustion engines created for diagnostic purposes. The database was made for vessels of the biggest Polish shipowner. It is used for archiving an...The article describes an electronic database of selected marine piston combustion engines created for diagnostic purposes. The database was made for vessels of the biggest Polish shipowner. It is used for archiving and comparing measured parameters of diagnosed engines with model parameters. To facilitate the search for and use of required data, they have been collected and catalogued. For this purpose the database has been prepared by using a computer program included in the Microsoft Office suite. The database search relies on the details concerning the type of vessel. The fields displayed include such items as the year and place of construction, the parameters of the ship, flag, etc.. For each vessel special forms are available for main and auxiliary engines, enabling easy and quick check of the necessary parameters during operation of the engine. The database contains parameters of the main propulsion and auxiliary engines, as well as model characteristics to help determine the diagnostics, prognosis and genesis.展开更多
In the first step, the Ehrenfest reasoning concerning the adiabatic invariance of the angular orbital momentum is applied to the electron motion in the hydrogen atom. It is demonstrated that the time of the energy emi...In the first step, the Ehrenfest reasoning concerning the adiabatic invariance of the angular orbital momentum is applied to the electron motion in the hydrogen atom. It is demonstrated that the time of the energy emission from the quantum level n+1 to level n can be deduced from the orbital angular momentum examined in the hydrogen atom. This time is found precisely equal to the time interval dictated by the Joule-Lenz law governing the electron transition between the levels n+1 and n. In the next step, the mechanical parameters entering the quantum systems are applied in calculating the time intervals characteristic for the electron transitions. This concerns the neighbouring energy levels in the hydrogen atom as well as the Landau levels in the electron gas submitted to the action of a constant magnetic field.展开更多
文摘The article describes an electronic database of selected marine piston combustion engines created for diagnostic purposes. The database was made for vessels of the biggest Polish shipowner. It is used for archiving and comparing measured parameters of diagnosed engines with model parameters. To facilitate the search for and use of required data, they have been collected and catalogued. For this purpose the database has been prepared by using a computer program included in the Microsoft Office suite. The database search relies on the details concerning the type of vessel. The fields displayed include such items as the year and place of construction, the parameters of the ship, flag, etc.. For each vessel special forms are available for main and auxiliary engines, enabling easy and quick check of the necessary parameters during operation of the engine. The database contains parameters of the main propulsion and auxiliary engines, as well as model characteristics to help determine the diagnostics, prognosis and genesis.
文摘In the first step, the Ehrenfest reasoning concerning the adiabatic invariance of the angular orbital momentum is applied to the electron motion in the hydrogen atom. It is demonstrated that the time of the energy emission from the quantum level n+1 to level n can be deduced from the orbital angular momentum examined in the hydrogen atom. This time is found precisely equal to the time interval dictated by the Joule-Lenz law governing the electron transition between the levels n+1 and n. In the next step, the mechanical parameters entering the quantum systems are applied in calculating the time intervals characteristic for the electron transitions. This concerns the neighbouring energy levels in the hydrogen atom as well as the Landau levels in the electron gas submitted to the action of a constant magnetic field.