期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
A method combining refined composite multiscale fuzzy entropy with PSO-SVM for roller bearing fault diagnosis 被引量:9
1
作者 XU Fan Peter W TSE 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2404-2417,共14页
Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined compo... Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined composite multiscale sample entropy(RCMSE)and multiscale fuzzy entropy(MFE),the smoothness of RCMFE is superior to that of those models.The corresponding comparison of smoothness and analysis of validity through decomposition accuracy are considered in the numerical experiments by considering the white and 1/f noise signals.Then RCMFE,RCMSE and MFE are developed to affect extraction by using different roller bearing vibration signals.Then the extracted RCMFE,RCMSE and MFE eigenvectors are regarded as the input of the PSO-SVM to diagnose the roller bearing fault.Finally,the results show that the smoothness of RCMFE is superior to that of RCMSE and MFE.Meanwhile,the fault classification accuracy is higher than that of RCMSE and MFE. 展开更多
关键词 refined composite multiscale fuzzy entropy roller bearings support vector machine fault diagnosis particle swarm optimization
下载PDF
基于RCMDE和ISOMAP的行星齿轮传动耦合故障辨识研究
2
作者 苏世卿 王华锋 《机电工程》 CAS 北大核心 2024年第9期1584-1594,共11页
现有针对行星齿轮箱的故障诊断方法一般仅研究单一故障,但实际行星齿轮箱的故障一般由多个故障耦合而成,耦合故障的故障机理比单一故障的故障机理更复杂,振动信号中的非线性因素对特征提取的干扰更严重。针对该问题,提出了一种基于精细... 现有针对行星齿轮箱的故障诊断方法一般仅研究单一故障,但实际行星齿轮箱的故障一般由多个故障耦合而成,耦合故障的故障机理比单一故障的故障机理更复杂,振动信号中的非线性因素对特征提取的干扰更严重。针对该问题,提出了一种基于精细复合多尺度散度熵(RCMDE)、等距特征映射(ISOMAP)和遗传算法优化核极限学习机(GA-KELM)的行星齿轮箱耦合故障诊断方法。首先,利用振动加速度计采集了行星齿轮箱单一故障和耦合故障下运行时的振动信号,构建了故障数据集;随后,利用RCMDE提取了行星齿轮箱振动信号的故障特征,建立了初始的特征样本;接着,利用ISOMAP对故障特征进行了降维,并以可视化的方式获取了低维的特征样本;最后,将新特征输入至GA-KELM分类器中,对行星齿轮箱的不同故障类型进行了识别,并基于行星齿轮箱多点损伤样本,对RCMDE方法的可靠性进行了研究。研究结果表明:基于RCMDE和ISOMAP的故障特征提取方法能够有效提取振动信号中的故障特征,而GA-KELM的故障诊断准确率达到了98.13%,平均诊断准确率达到了96.25%。相较其他故障特征提取方法,基于RCMDE、ISOMAP和GA-KELM的行星齿轮箱耦合故障诊断方法能够更好地诊断行星齿轮箱的耦合故障,具有更高的诊断准确率。 展开更多
关键词 齿轮传动 耦合故障 故障诊断准确率 精细复合多尺度散度熵 等距特征映射 遗传算法优化核极限学习机
下载PDF
基于RCMDE与极限学习机的滚动轴承故障诊断 被引量:5
3
作者 刘云斌 钱俊 潘曙明 《制造技术与机床》 北大核心 2023年第2期123-126,共4页
针对滚动轴承故障信号识别率低的情况,提出一种基于精细复合多尺度离散熵(RCMDE)与极限学习机(ELM)的故障诊断方法。首先,从原始振动信号中提取20个尺度的精细复合多尺度离散熵并以此构建故障特征集,然后利用ELM对其进行故障种类识别。... 针对滚动轴承故障信号识别率低的情况,提出一种基于精细复合多尺度离散熵(RCMDE)与极限学习机(ELM)的故障诊断方法。首先,从原始振动信号中提取20个尺度的精细复合多尺度离散熵并以此构建故障特征集,然后利用ELM对其进行故障种类识别。通过凯斯西储大学的轴承数据验证提出方法的有效性,最后将提出方法与MPE-ELM进行对比。对比结果说明提出的故障诊断方法具有更高的分类精度。 展开更多
关键词 精细复合多尺度离散熵 ELM 故障诊断
下载PDF
基于RCMDE和PNN的传动箱轴承故障诊断 被引量:1
4
作者 刘尚坤 范壮壮 +2 位作者 孔德刚 王家忠 李珊珊 《农机化研究》 北大核心 2023年第7期244-248,共5页
针对玉米收获机传动箱滚动轴承运行状态识别问题,提出了一种基于精细复合多尺度散布熵(RCMDE)和概率神经网络(PNN)的故障识别新方法。首先,对拾取的信号进行RCMDE分析,提取故障特征向量;然后,将特征向量输入PNN分类器进行训练和测试;最... 针对玉米收获机传动箱滚动轴承运行状态识别问题,提出了一种基于精细复合多尺度散布熵(RCMDE)和概率神经网络(PNN)的故障识别新方法。首先,对拾取的信号进行RCMDE分析,提取故障特征向量;然后,将特征向量输入PNN分类器进行训练和测试;最终识别出轴承故障状态和程度。传动箱轴承试验数据分析结果表明:文中方法能有效识别出轴承的不同故障状态及损伤程度,故障识别率达到99.29%,与多尺度样本熵(MSE)相比识别率更高,对农机轴承的故障诊断具有一定应用价值。 展开更多
关键词 收获机传动箱轴承 精细复合多尺度散布熵 概率神经网络 故障识别
下载PDF
基于UPEMD融合RCMCSE和ALWOA-BP的水电机组故障诊断
5
作者 李想 钱晶 曾云 《水利学报》 EI CSCD 北大核心 2024年第6期744-755,共12页
水电机组振动信号的诊断对机组安全稳定运行至关重要。本文提出一种基于均匀相位经验模态分解(Uniform Phase EMD,UPEMD)融合精细复合多尺度余弦相似熵(Refined Composite Multiscale CSE,RCMCSE)和改进鲸鱼算法优化反向传播神经网络(AL... 水电机组振动信号的诊断对机组安全稳定运行至关重要。本文提出一种基于均匀相位经验模态分解(Uniform Phase EMD,UPEMD)融合精细复合多尺度余弦相似熵(Refined Composite Multiscale CSE,RCMCSE)和改进鲸鱼算法优化反向传播神经网络(ALWOA-BP)的水电机组故障诊断方法。利用UPEMD对原始信号进行分解,然后建立WOA-BP故障诊断模型。针对WOA算法快速陷入局部最优和过早收敛的问题,采用自适应权重和莱维飞行对WOA算法进行优化。实验结果表明,该方法的准确率达到了100%。为探究所提模型的抗噪性能,引入信噪比为2 dB的噪声进行再次分析,诊断结果为94.44%,明显优于其他未优化模型。该项研究可以对现有水电机组故障诊断方法进行有价值的补充。 展开更多
关键词 水电机组 精细复合多尺度熵 余弦相似熵 ALWOA-BP 故障诊断
下载PDF
基于多元精细复合多尺度波动散布熵和累积欧氏距离矩阵测度的风电机组变桨轴承退化状态评估
6
作者 王晓龙 李英晟 +1 位作者 付锐棋 何玉灵 《动力工程学报》 CAS CSCD 北大核心 2024年第5期782-791,共10页
针对风电机组变桨轴承服役过程环境噪声干扰严重、退化状态评估精度低的问题,提出一种基于多元精细复合多尺度波动散布熵和累积欧氏距离矩阵测度的退化状态评估模型。该模型将监测数据状态特征获取过程由单通道拓展为多通道进行,通过提... 针对风电机组变桨轴承服役过程环境噪声干扰严重、退化状态评估精度低的问题,提出一种基于多元精细复合多尺度波动散布熵和累积欧氏距离矩阵测度的退化状态评估模型。该模型将监测数据状态特征获取过程由单通道拓展为多通道进行,通过提出的多元精细复合多尺度波动散布熵算法来获取多通道监测数据的多尺度状态特征,并将累积和检验算法与欧氏距离矩阵测度方法相结合,用于定量衡量基准样本与待分析样本间的差异,从而实现变桨轴承退化状态评估。风电机组变桨轴承全寿命周期加速疲劳实验验证结果表明:该模型能够及时捕捉到变桨轴承的初始退化时刻并且准确跟踪整个退化过程。 展开更多
关键词 风电机组 变桨轴承 退化状态评估 多元精细复合多尺度波动散布熵 累积欧氏距离矩阵测度
下载PDF
基于RCMFME和AO-ELM的齿轮箱损伤识别策略
7
作者 沈羽 赵旭 《机电工程》 CAS 北大核心 2024年第2期226-235,共10页
针对模糊熵只考虑信号的局部特征而忽略信号的全局特征,导致齿轮箱故障识别的准确率不佳的问题,提出了一种基于精细复合多尺度模糊测度熵(RCMFME)、天鹰优化器(AO)优化极限学习机(ELM)的齿轮箱故障诊断方法。首先,在精细复合多尺度模糊... 针对模糊熵只考虑信号的局部特征而忽略信号的全局特征,导致齿轮箱故障识别的准确率不佳的问题,提出了一种基于精细复合多尺度模糊测度熵(RCMFME)、天鹰优化器(AO)优化极限学习机(ELM)的齿轮箱故障诊断方法。首先,在精细复合多尺度模糊熵的基础上,对矢量的构造方式进行了改进,提出了能够同时考虑时间序列局部特征和全局特征的RCMFME方法;随后,利用RCMFME指标提取了齿轮箱振动信号的熵值,组建了故障特征向量;接着,利用AO算法对极限学习机的参数进行了自适应搜索,生成了参数最优的多类别分类器;最后,将训练样本的故障特征向量输入至AO-ELM分类模型中进行了模型训练,以构造性能最优的分类器,并实现了对齿轮箱测试样本的故障识别目的;利用两种齿轮箱振动数据集进行了实验,在识别准确率和识别稳定性方面,与相关的特征提取方法进行了对比。研究结果表明:采用基于RCMFME和AO-ELM的故障诊断方法能够分别取得100%和98%的分类准确率,平均识别准确率分别达到了100%和98%,优于精细复合多尺度全局模糊熵(RCMGFE)、精细复合多尺度模糊熵(RCMFE)、精细复合多尺度样本熵(RCMSE)。该方法具有显著的应用潜力。 展开更多
关键词 齿轮箱故障诊断 精细复合多尺度模糊测度熵 天鹰优化器 极限学习机 AO-ELM分类模型 特征提取
下载PDF
RCMNAAPE在旋转机械故障诊断中的应用
8
作者 储祥冬 戴礼军 +3 位作者 涂金洲 罗震寰 于震 秦磊 《机电工程》 CAS 北大核心 2024年第6期1039-1049,共11页
针对精细复合多尺度排列熵(RCMPE)无法充分提取旋转机械振动信号中的故障信息,从而导致旋转机械故障识别准确率不稳定这一缺陷,提出了一种基于精细复合多尺度归一化幅值感知排列熵(RCMNAAPE)、拉普拉斯分数(LS)和灰狼算法优化支持向量机... 针对精细复合多尺度排列熵(RCMPE)无法充分提取旋转机械振动信号中的故障信息,从而导致旋转机械故障识别准确率不稳定这一缺陷,提出了一种基于精细复合多尺度归一化幅值感知排列熵(RCMNAAPE)、拉普拉斯分数(LS)和灰狼算法优化支持向量机(GWO-SVM)的旋转机械故障诊断方法。首先,利用幅值感知排列熵替换了RCMPE中的排列熵,提出了RCMNAAPE,并将其用于提取旋转机械振动信号的故障特征生成特征样本;随后,采用了LS从原始的高维故障特征向量中筛选出较少的能够更准确描述故障状态的特征,构造敏感特征样本;最后,将低维的故障特征向量输入由灰狼算法优化的支持向量机中进行了训练和测试,完成了旋转机械样本的故障识别和分类,利用滚动轴承和齿轮箱故障数据集将RCMNAAPE-LS-GWO-SVM与其他故障诊断方法进行了对比分析,并开展了评估。研究结果表明:基于RCMNAAPE-LS-GWO-SVM的故障诊断方法能够有效识别旋转机械的各类故障,其识别准确率高于其他对比的故障诊断方法,其中滚动轴承故障的识别准确率达到99.33%,齿轮箱故障的识别准确率达到98.67%。虽然,该方法的特征提取效率不佳,平均特征提取时间分别为153.02 s和163.98 s,仅优于精细复合多尺度模糊熵(RCMFE),但其综合性能更加优异。 展开更多
关键词 故障识别准确率 滚动轴承 齿轮箱 精细复合多尺度归一化幅值感知排列熵 拉普拉斯分数 灰狼优化支持向量机
下载PDF
FDM和RCMDE结合的特征提取与故障诊断 被引量:10
9
作者 左红艳 刘晓波 洪连环 《振动.测试与诊断》 EI CSCD 北大核心 2021年第3期539-546,624,共9页
为提取有效特征向量以实现航空发动动机转子的故障诊断,针对航空发动机转子振动信号的非线性、非平稳的特性,首先,应用傅里叶分解方法(Fourier decomposition method,简称FDM)提取航空发动机转子信号的边际谱重心及最大能量层的谱重心;... 为提取有效特征向量以实现航空发动动机转子的故障诊断,针对航空发动机转子振动信号的非线性、非平稳的特性,首先,应用傅里叶分解方法(Fourier decomposition method,简称FDM)提取航空发动机转子信号的边际谱重心及最大能量层的谱重心;其次,计算振动信号的精细复合多尺度散布熵;最后,应用双阶自适应小波聚类方法对特征空间实现故障分类与识别。应用航空发动机转子试验器采集的样本验证表明,上述方法提取的特征值准确且波动小,同种故障类型的特征值集中,不同故障类型之间差异大,有利于提高多种故障类型混合的诊断精度。 展开更多
关键词 傅里叶分解 精细复合多尺度散布熵 双阶自适应小波聚类 故障诊断
下载PDF
基于SORT映射的IRCMFDE在旋转机械故障诊断中的应用
10
作者 王潞红 邹平吉 《机电工程》 北大核心 2024年第1期11-21,共11页
针对旋转机械振动信号的强非线性和非平稳性,导致故障特征提取困难的问题,提出了一种基于SORT映射的改进精细复合多尺度波动散布熵(IRCMFDE)和蝙蝠算法优化的相关向量机(BA-RVM)的旋转机械故障诊断方法。首先,利用SORT映射函数替换了精... 针对旋转机械振动信号的强非线性和非平稳性,导致故障特征提取困难的问题,提出了一种基于SORT映射的改进精细复合多尺度波动散布熵(IRCMFDE)和蝙蝠算法优化的相关向量机(BA-RVM)的旋转机械故障诊断方法。首先,利用SORT映射函数替换了精细复合多尺度波动散布熵(RCMFDE)方法的正态累积分布函数,同时对RCMFDE方法的粗粒化方式进行了改进,提出了基于SORT映射的IRCMFDE方法;随后,利用IRCMFDE方法提取了旋转机械振动信号的故障特征,构造了故障特征集;最后,采用BA-RVM分类器对旋转机械的故障类型进行了智能化的识别和分类;将基于IRCMFDE和BA-RVM的故障诊断方法应用于滚动轴承、离心泵和齿轮箱的实验数据分析,并将其与现有故障诊断方法进行了对比分析。研究结果表明:基于IRCMFDE和BA-RVM的故障诊断方法能够有效地识别旋转机械的故障状态,识别准确率分别达到了100%、98%和99%,相比基于RCMFDE、精细复合多尺度熵、精细复合多尺度模糊熵、精细复合多尺度排列熵和精细复合多尺度散布熵的故障特征提取方法,该故障诊断方法的效率和平均识别准确率均优于对比方法,其更适合应用于旋转机械的在线实时故障监测。 展开更多
关键词 改进精细复合多尺度波动散布熵 SORT映射 蝙蝠算法优化的相关向量机 旋转机械 故障分类识别
下载PDF
基于CEEMDAN和RCMDE的往复压缩机轴承故障诊断方法 被引量:11
11
作者 王金东 欧凌非 +1 位作者 赵海洋 宋美萍 《机床与液压》 北大核心 2021年第5期168-172,161,共6页
针对往复压缩机振动加速度信号的非线性、非平稳等特性,提出一种基于自适应噪声完备集合经验模态分解(CEEMDAN)和精细复合多尺度散布熵(RCMDE)的往复压缩机轴承故障特征提取方法。采用CEEMDAN方法对信号进行分解时,通过不同的参数组合,... 针对往复压缩机振动加速度信号的非线性、非平稳等特性,提出一种基于自适应噪声完备集合经验模态分解(CEEMDAN)和精细复合多尺度散布熵(RCMDE)的往复压缩机轴承故障特征提取方法。采用CEEMDAN方法对信号进行分解时,通过不同的参数组合,可得到不同的IMF分量;计算不同参数条件下重构后的信号的峭度值,选用峭度值最大的一组参数重新对信号进行CEEMDAN分解,并进行信号重构。对重构后的信号进行RCMDE分析,提取故障特征向量,并利用支持向量机(SVM)进行分类识别。将优选参数的CEEMDAN分解方法和原CEEMDAN分解方法进行对比,结果表明:优选参数的CEEMDAN分解方法能更好地提取往复压缩机周期冲击性信号,有利于提高故障诊断的精确度。 展开更多
关键词 自适应噪声完备集合经验模态分解 精细复合多尺度散布熵 信号重构 往复压缩机 故障诊断
下载PDF
基于CMMFDE与多传感器信息融合的旋转机械故障诊断研究
12
作者 程志平 王潞红 +1 位作者 欧斌 吴军良 《机电工程》 CAS 北大核心 2024年第5期807-816,共10页
采用单一传感器采集的振动信号难以准确描述旋转机械动态特性,导致提取的故障特征无法准确辨识旋转机械故障。针对这一缺陷,提出了一种基于复合多元多尺度波动散布熵(CMMFDE)、多传感器信息融合和哈里斯鹰算法优化极限学习机(HHO-ELM)... 采用单一传感器采集的振动信号难以准确描述旋转机械动态特性,导致提取的故障特征无法准确辨识旋转机械故障。针对这一缺陷,提出了一种基于复合多元多尺度波动散布熵(CMMFDE)、多传感器信息融合和哈里斯鹰算法优化极限学习机(HHO-ELM)的旋转机械故障诊断方法。首先,引入复合多元粗粒化处理,提出了CMMFDE方法,避免了传统单变量分析方法只能处理单一通道振动信号而导致特征的表征性能不足的缺陷,增强了故障特征的表征性能;随后,利用布置在旋转机械不同部位的传感器收集了多种类型的信号,组成混合多通道信号,并进行了CMMFDE分析,构建了故障特征;最后,采用HHO对极限学习机的参数进行了自适应优化,并对特征样本进行了训练和测试,完成了旋转机械的故障识别工作;利用齿轮箱、离心泵两种典型的旋转机械数据集进行了实验分析。研究结果表明:该方法对多个通道的信号进行分析时,所获得的准确率达到了100%和98%,优于对单个通道信号进行分析时获得的准确率,同时CMMFDE方法的准确率和特征提取时间均优于精细复合多元多尺度熵(RCMMSE)、精细复合多元多尺度模糊熵(RCMMFE)、精细复合多元多尺度排列熵(RCMMPE)、多元多尺度波动散布熵(MMFDE)。 展开更多
关键词 旋转机械 故障诊断 齿轮箱 离心泵 复合多元多尺度波动散布熵 哈里斯鹰优化极限学习机
下载PDF
基于经验模态分解的精细复合多尺度排列熵癫痫脑电信号分类方法
13
作者 梁袁泽 张学军 《智能计算机与应用》 2024年第5期44-51,共8页
癫痫是一种常见的脑部疾病,通过脑电图能准确地定位人脑中的致痫区域。文章提出一种基于经验模态分解的精细复合多尺度排列熵的癫痫脑电信号自动检测方法,用于解决区分致痫区和非致痫区的癫痫脑电信号难的问题。首先将原信号分割成多个... 癫痫是一种常见的脑部疾病,通过脑电图能准确地定位人脑中的致痫区域。文章提出一种基于经验模态分解的精细复合多尺度排列熵的癫痫脑电信号自动检测方法,用于解决区分致痫区和非致痫区的癫痫脑电信号难的问题。首先将原信号分割成多个子信号,并对各子信号进行经验模态分解,然后从分解后的不同经验模态函数中提取精细复合多尺度排列熵特征并利用支持向量机进行分类。通过对癫痫脑电的公共数据集测试,实验结果表明准确率、灵敏度和特异度三个性能指标分别达到90.3%,85.0%和96.0%,ROC曲线下面积达0.98。 展开更多
关键词 癫痫 经验模态分解 精细复合多尺度排列熵 支持向量机
下载PDF
基于RCMDE和GA-SVM的矿用滚动轴承故障诊断 被引量:7
14
作者 赵国社 黄丹璐 赵鑫 《煤炭技术》 CAS 北大核心 2021年第10期221-223,共3页
针对传统特征进行矿用轴承故障诊断时可靠性、准确性低的问题,提出了基于精细复合多尺度散布熵(RCMDE)和支持向量机(SVM)的矿用滚动轴承故障诊断方法。针对难以选取合适的SVM参数问题,使用遗传算法(GA)确定SVM参数最优值。经实验验证,... 针对传统特征进行矿用轴承故障诊断时可靠性、准确性低的问题,提出了基于精细复合多尺度散布熵(RCMDE)和支持向量机(SVM)的矿用滚动轴承故障诊断方法。针对难以选取合适的SVM参数问题,使用遗传算法(GA)确定SVM参数最优值。经实验验证,本文方法能够更准确地提取滚动轴承的故障特征信息,有效识别滚动轴承故障类型。 展开更多
关键词 滚动轴承 精细复合多尺度散布熵 遗传算法 支持向量机 故障诊断
下载PDF
基于VMD联合RCMDE的特定辐射源识别方法 被引量:2
15
作者 宋子豪 程伟 +1 位作者 李敬文 李晓柏 《无线电工程》 北大核心 2022年第8期1386-1394,共9页
针对常用于特定辐射源识别(Specific Emitter Identification,SEI)的典型一维特征常常引发识别性能下滑问题,高维度特征维度较大、与一般分类器结合使用时计算效率较低的问题,提出了一种基于变分模态分解(Variational Mode Decompositio... 针对常用于特定辐射源识别(Specific Emitter Identification,SEI)的典型一维特征常常引发识别性能下滑问题,高维度特征维度较大、与一般分类器结合使用时计算效率较低的问题,提出了一种基于变分模态分解(Variational Mode Decomposition,VMD)和精细复合多尺度散布熵(Refined Composite Multi-scale Dispersion Entropy,RCMDE)的SEI方法,利用VMD和RCMDE获取原始辐射源信号不同频率分量的多尺度时间复杂度特征,选择支持向量机(Support Vector Machine,SVM)完成分类识别。仿真结果表明,莱斯信道下,在-5~15 dB的信噪比(Signal-to-Noise,SNR)范围内,所提方法对3个不同辐射源个体的识别准确率达到了99.2367%,相比于其他方法有显著的性能提升。 展开更多
关键词 变分模态分解 精细复合多尺度散布熵 特定辐射源识别
下载PDF
基于RCMDE和KFCM的煤矿电网故障选线方法 被引量:5
16
作者 韩国国 史小军 +2 位作者 王晖 程卫健 穆艳祥 《工矿自动化》 北大核心 2022年第8期92-99,共8页
针对普遍采用谐振接地系统的煤矿电网发生单相接地故障时难以准确选线的问题,提出一种基于精细复合多尺度散布熵(RCMDE)和核模糊C均值聚类(KFCM)的煤矿电网故障选线方法。以幅值、极性和波形相似度作为选线特征量具有以下局限性:基于幅... 针对普遍采用谐振接地系统的煤矿电网发生单相接地故障时难以准确选线的问题,提出一种基于精细复合多尺度散布熵(RCMDE)和核模糊C均值聚类(KFCM)的煤矿电网故障选线方法。以幅值、极性和波形相似度作为选线特征量具有以下局限性:基于幅值和极性差异的选线方法适用性有限;若线路中的零序电流互感器极性接反,基于极性的方法直接失效;采样不同步时,基于波形相似度的选线方法难以得到正确结果。为克服上述局限性,引入RCMDE来度量各线路暂态零序电流信号的复杂程度和不规则度,以RCMDE作为选线特征量。采用KFCM算法对RCMDE进行聚类分析,以实现故障线路自动识别,并通过判断轮廓系数是否超过阈值来区分母线故障和馈线故障。最后,通过聚类得到的隶属度矩阵判断馈线故障点所在线路。仿真结果表明:①故障点所在的故障线路对应的RCMDE曲线与非故障线路间具有较大差异,可分为2类。RCMDE可作为筛选故障线路的特征指标。②发生母线故障时聚类结果中存在平均轮廓系数小于阈值的分簇,而发生馈线故障时聚类结果各分簇的轮廓系数均大于阈值,在各类故障场景下,基于RCMDE和KFCM的煤矿电网故障选线方法均能实现正确选线,说明其准确性不受故障线路、故障位置、故障合闸角及接地电阻等因素的影响。③在噪声干扰情况下,基于RCMDE和KFCM的煤矿电网故障选线方法在小电阻接地或高阻接地情况下均能实现正确选线,具有较强的抗干扰能力。④在采样不同步及故障线路零序电流互感器极性反接等情况下,基于RCMDE和KFCM的煤矿电网故障选线方法仍可实现正确选线,选线结果具有较高的鲁棒性。 展开更多
关键词 谐振接地系统 煤矿电网 单相接地故障 故障选线 精细复合多尺度散布熵 核模糊C均值聚类 暂态零序电流
下载PDF
精细广义复合多元多尺度反向散布熵及其在滚动轴承故障诊断中的应用 被引量:7
17
作者 郑近德 陈焱 +1 位作者 童靳于 潘海洋 《中国机械工程》 EI CAS CSCD 北大核心 2023年第11期1315-1325,共11页
多尺度反向散布熵能够有效度量时间序列的复杂性,但在粗粒化构造上存在缺陷,且在表征滚动轴承非线性故障特征时缺乏对其他通道同步信息的有效利用。为了准确提取轴承信号的故障特征,结合精细化和广义复合多尺度的思想,将表征同步多通道... 多尺度反向散布熵能够有效度量时间序列的复杂性,但在粗粒化构造上存在缺陷,且在表征滚动轴承非线性故障特征时缺乏对其他通道同步信息的有效利用。为了准确提取轴承信号的故障特征,结合精细化和广义复合多尺度的思想,将表征同步多通道数据多变量复杂度的多变量熵理论应用到轴承故障诊断中,提出了精细广义复合多元多尺度反向散布熵(RGCMvMRDE)。在此基础上,提出了一种基于RGCMvMRDE与引力搜索算法优化支持向量机(GSA-SVM)的滚动轴承故障诊断方法。首先,利用RGCMvMRDE全面表征滚动轴承故障特征信息,构建故障特征集;其次,采用GSA-SVM对故障类型进行智能识别;最后,将所提方法应用于滚动轴承实验数据分析,并将其与现有基于多尺度反向散布熵、广义多尺度反向散布熵和精细复合多元多尺度排列熵的故障特征提取方法进行了对比。研究结果表明,所提RGCMvMRDE不仅能够有效和精准地诊断轴承的不同故障类型和故障程度,且诊断效果优于上述对比方法。 展开更多
关键词 精细广义复合多元多尺度反向散布熵 滚动轴承 故障诊断 特征提取
下载PDF
基于精细复合多尺度散布熵与XGBoost的海面小目标检测方法 被引量:2
18
作者 王海峰 行鸿彦 +2 位作者 陈梦 赵迪 李瑾 《电子测量与仪器学报》 CSCD 北大核心 2023年第1期12-20,共9页
针对传统海面漂浮小目标的特征检测方法难以有效提取目标特征的问题,提出了一种基于RCMDE-XGBoost海面小目标检测方法。利用变分模态分解对信号进行去噪预处理,通过精细复合多尺度散布熵提取目标的多尺度特征,构建多维度特征矩阵,输入XG... 针对传统海面漂浮小目标的特征检测方法难以有效提取目标特征的问题,提出了一种基于RCMDE-XGBoost海面小目标检测方法。利用变分模态分解对信号进行去噪预处理,通过精细复合多尺度散布熵提取目标的多尺度特征,构建多维度特征矩阵,输入XGBoost网络进行特征分类,通过模型训练,实现海面小目标检测。利用IPIX雷达实测数据库,在#54、#311、#320海情HV极化方式下检测率分别达到了93.33%、92.38%、95%,相较于图连通密度检测法平均提升12%,证明了RCMDE-XGBoost检测方法有效。 展开更多
关键词 精细复合多尺度散布熵 XGBoost 微弱信号检测 海杂波
下载PDF
基于声振信号融合的IRCMMDE离心泵损伤检测方法 被引量:2
19
作者 陆春元 焦洪宇 《机电工程》 CAS 北大核心 2023年第6期952-959,共8页
离心泵早期的损伤特征比较微弱,难以有效提取其故障特征。针对这一问题,提出了一种基于声振信号融合的改进精细复合多元多尺度散布熵(IRCMMDE)和GWO-SVM的离心泵损伤检测方法。首先,利用多个传感器收集了离心泵在不同损伤状态下的声音... 离心泵早期的损伤特征比较微弱,难以有效提取其故障特征。针对这一问题,提出了一种基于声振信号融合的改进精细复合多元多尺度散布熵(IRCMMDE)和GWO-SVM的离心泵损伤检测方法。首先,利用多个传感器收集了离心泵在不同损伤状态下的声音和振动信号,并将声音和振动信号进行了融合,以充分利用不同类型信号中所蕴含的损伤特征信息;随后,针对多元多尺度散布熵(MMDE)不稳定的缺陷,对MMDE的粗粒化处理进行了优化,提出了改进精细复合多元多尺度散布熵(IRCMMDE)的复杂性测量指标;接着,利用IRCMMDE对声振融合信号进行了损伤特征提取,构建了各个损伤状态下的特征矩阵;最后,利用灰狼算法优化的支持向量机分类器,对各个损伤状态下的特征矩阵进行了识别,得到了最终的离心泵损伤检测结论。研究结果表明:采用基于声振信号融合的离心泵损伤检测方法,其最高可达到99.2%的故障识别准确率,相比于基于MMDE和RCMMDE的损伤检测方法,其能够更准确地识别出离心泵的损伤;该方法还能有效缓解单一信号检测时的不确定性,并且在多次实验验证下,其仍具有很高的检测精度。 展开更多
关键词 声振信号融合 离心泵损伤检测 改进精细复合多元多尺度散布熵 灰狼算法 支持向量机
下载PDF
自适应动模式分解和GA-SVM在行星轴承故障分类中的应用 被引量:3
20
作者 蔡志鑫 党章 +2 位作者 吕勇 袁锐 安柄南 《工程科学学报》 EI CSCD 北大核心 2023年第9期1559-1568,共10页
行星齿轮箱在运行过程中由于齿轮间的相互作用会产生强噪声,导致行星轴承的故障特征被完全淹没在背景噪声中并难以提取,从而使得行星轴承故障分类的准确率较低.本文提出一种自适应动模式分解(ADMD)和遗传算法优化支持向量机(GA-SVM)的... 行星齿轮箱在运行过程中由于齿轮间的相互作用会产生强噪声,导致行星轴承的故障特征被完全淹没在背景噪声中并难以提取,从而使得行星轴承故障分类的准确率较低.本文提出一种自适应动模式分解(ADMD)和遗传算法优化支持向量机(GA-SVM)的行星轴承故障分类方法.首先,针对传统动模式分解(DMD)中截断秩无法准确选取的问题,定义了一种新的适应度函数,并采用改进的蚱蜢优化算法(IGOA)自适应选取最优截断秩,进而实现对原始振动信号的降噪处理.然后对处理后的信号计算其归一化后的复合精细多尺度离散熵(IRCMDE)并构成特征矩阵.最后采用遗传算法优化支持向量机,构建GA-SVM分类模型,并将其应用到行星轴承故障诊断中.利用行星齿轮箱中行星轴承故障数据验证了此方法的有效性和实用性,最终分类结果为96.43%,表明了该方法可以准确识别出行星轴承的故障类型. 展开更多
关键词 动模式分解 支持向量机 蚱蜢优化算法 精细复合多尺度离散熵 行星轴承 故障分类
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部