期刊文献+
共找到99篇文章
< 1 2 5 >
每页显示 20 50 100
Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer
1
作者 Hongliang Zhang Yi Chen +1 位作者 Yuteng Zhang Gongjie Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1459-1483,共25页
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke... The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality. 展开更多
关键词 Distributed flexible job shop scheduling problem dual resource constraints energy-saving scheduling multi-objective grey wolf optimizer Q-LEARNING
下载PDF
INTEGRATED OPERATOR GENETIC ALGORITHM FOR SOLVING MULTI-OBJECTIVE FLEXIBLE JOB-SHOP SCHEDULING
2
作者 袁坤 朱剑英 +1 位作者 鞠全勇 王有远 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期278-282,共5页
In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv... In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload. 展开更多
关键词 flexible job-shop integrated operator genetic algorithm multi-objective optimization job-shop scheduling
下载PDF
Multi-objective workflow scheduling in cloud system based on cooperative multi-swarm optimization algorithm 被引量:2
3
作者 YAO Guang-shun DING Yong-sheng HAO Kuang-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1050-1062,共13页
In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired ... In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms. 展开更多
关键词 multi-objective WORKFLOW scheduling multi-swarm OPTIMIZATION particle SWARM OPTIMIZATION (PSO) CLOUD computing system
下载PDF
Multi-objective optimization for draft scheduling of hot strip mill 被引量:2
4
作者 李维刚 刘相华 郭朝晖 《Journal of Central South University》 SCIE EI CAS 2012年第11期3069-3078,共10页
A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective ... A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective differential evolution algorithm based on decomposition (MODE/D). The two-objective and three-objective optimization experiments were performed respectively to demonstrate the optimal solutions of trade-off. The simulation results show that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to draft scheduling. The extreme Pareto solutions are found feasible and the centres of the Pareto fronts give a good compromise. The conflict exists between each two ones of three objectives. The final optimal solution is selected from the Pareto-optimal front by the importance of objectives, and it can achieve a better performance in all objective dimensions than the empirical solutions. Finally, the practical application cases confirm the feasibility of the multi-objective approach, and the optimal solutions can gain a better rolling stability than the empirical solutions, and strip flatness decreases from (0± 63) IU to (0±45) IU in industrial production. 展开更多
关键词 hot strip mill draft scheduling multi-objective optimization multi-objective differential evolution algorithm based ondecomposition (MODE/D) Pareto-optimal front
下载PDF
An improved multi-objective optimization algorithm for solving flexible job shop scheduling problem with variable batches 被引量:2
5
作者 WU Xiuli PENG Junjian +2 位作者 XIE Zirun ZHAO Ning WU Shaomin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期272-285,共14页
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro... In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches. 展开更多
关键词 flexible job shop variable batch inverse scheduling multi-objective evolutionary algorithm based on decomposition a batch optimization algorithm with inverse scheduling
下载PDF
A Novel Collaborative Evolutionary Algorithm with Two-Population for Multi-Objective Flexible Job Shop Scheduling 被引量:2
6
作者 CuiyuWang Xinyu Li Yiping Gao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1849-1870,共22页
Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enabl... Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enables any machine from a certain set to handle an operation,and this is an NP-hard problem.Furthermore,due to the requirements in real-world cases,multi-objective FJS is increasingly widespread,thus increasing the challenge of solving the FJS problems.As a result,it is necessary to develop a novel method to address this challenge.To achieve this goal,a novel collaborative evolutionary algorithmwith two-population based on Pareto optimality is proposed for FJS,which improves the solutions of FJS by interacting in each generation.In addition,several experimental results have demonstrated that the proposed method is promising and effective for multi-objective FJS,which has discovered some new Pareto solutions in the well-known benchmark problems,and some solutions can dominate the solutions of some other methods. 展开更多
关键词 multi-objective flexible job shop scheduling Pareto archive set collaborative evolutionary crowd similarity
下载PDF
The Information Modeling and Intelligent Optimization Method for Logistics Vehicle Routing and Scheduling with Multi-objective and Multi-constraint 被引量:2
7
作者 李蓓智 周亚勤 +1 位作者 兰世海 杨建国 《Journal of Donghua University(English Edition)》 EI CAS 2007年第4期455-459,466,共6页
The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering... The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint. 展开更多
关键词 modern logistics vehicle scheduling routing optimization multi-objective multi-constraint biologic immunity information modeling
下载PDF
Multi-objective modeling and optimization for scheduling of cracking furnace systems 被引量:8
8
作者 Peng Jiang Wenli Du 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期992-999,共8页
Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multip... Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multiple feeds are simultaneously processed in multiple cracking furnaces with the changing of operating cost and yield of product. In this paper, given the requirements of both profit and energy saving in actual production process, a multi-objective optimization model contains two objectives, maximizing the average benefits and minimizing the average coking amount was proposed. The model can be abstracted as a multi-objective mixed integer non- linear programming problem. Considering the mixed integer decision variables of this multi-objective problem, an improved hybrid encoding non-dominated sorting genetic algorithm with mixed discrete variables (MDNSGA-II) is used to solve the Pareto optimal front of this model, the algorithm adopted crossover and muta- tion strategy with multi-operators, which overcomes the deficiency that normal genetic algorithm cannot handle the optimization problem with mixed variables. Finally, using an ethylene plant with multiple cracking furnaces as an example to illustrate the effectiveness of the scheduling results by comparing the optimization results of multi-objective and single objective model. 展开更多
关键词 Cracking furnace systems Feed scheduling multi-objective mixed integer nonlinear optimization Genetic algorithm
下载PDF
Multi-objective reconfigurable production line scheduling for smart home appliances 被引量:2
9
作者 LI Shiyun ZHONG Sheng +4 位作者 PEI Zhi YI Wenchao CHEN Yong WANG Cheng ZHANG Wenzhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期297-317,共21页
In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In ord... In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In order to effectively handle the production scheduling problem for the manufacturing system,an improved multi-objective particle swarm optimization algorithm based on Brownian motion(MOPSO-BM)is proposed.Since the existing MOPSO algorithms are easily stuck in the local optimum,the global search ability of the proposed method is enhanced based on the random motion mechanism of the BM.To further strengthen the global search capacity,a strategy of fitting the inertia weight with the piecewise Gaussian cumulative distribution function(GCDF)is included,which helps to maintain an excellent convergence rate of the algorithm.Based on the commonly used indicators generational distance(GD)and hypervolume(HV),we compare the MOPSO-BM with several other latest algorithms on the benchmark functions,and it shows a better overall performance.Furthermore,for a real reconfigurable production line of smart home appliances,three algorithms,namely non-dominated sorting genetic algorithm-II(NSGA-II),decomposition-based MOPSO(dMOPSO)and MOPSO-BM,are applied to tackle the scheduling problem.It is demonstrated that MOPSO-BM outperforms the others in terms of convergence rate and quality of solutions. 展开更多
关键词 reconfigurable production line improved particle swarm optimization(PSO) multi-objective optimization flexible flowshop scheduling smart home appliances
下载PDF
Multi-objective Collaborative Optimization for Scheduling Aircraft Landing on Closely Spaced Parallel Runways Based on Genetic Algorithms 被引量:1
10
作者 Zhang Shuqin Jiang Yu Xia Hongshan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第4期502-509,共8页
A scheduling model of closely spaced parallel runways for arrival aircraft was proposed,with multi-objections of the minimum flight delay cost,the maximum airport capacity,the minimum workload of air traffic controlle... A scheduling model of closely spaced parallel runways for arrival aircraft was proposed,with multi-objections of the minimum flight delay cost,the maximum airport capacity,the minimum workload of air traffic controller and the maximum fairness of airlines′scheduling.The time interval between two runways and changes of aircraft landing order were taken as the constraints.Genetic algorithm was used to solve the model,and the model constrained unit delay cost of the aircraft with multiple flight tasks to reduce its delay influence range.Each objective function value or the fitness of particle unsatisfied the constrain condition would be punished.Finally,one domestic airport hub was introduced to verify the algorithm and the model.The results showed that the genetic algorithm presented strong convergence and timeliness for solving constraint multi-objective aircraft landing problem on closely spaced parallel runways,and the optimization results were better than that of actual scheduling. 展开更多
关键词 air transportation runway scheduling closely spaced parallel runways genetic algorithm multi-objections
下载PDF
Multi-objective optimization sensor node scheduling for target tracking in wireless sensor network 被引量:1
11
作者 文莎 Cai Zixing Hu Xiaoqing 《High Technology Letters》 EI CAS 2014年第3期267-273,共7页
Target tracking in wireless sensor network usually schedules a subset of sensor nodes to constitute a tasking cluster to collaboratively track a target.For the goals of saving energy consumption,prolonging network lif... Target tracking in wireless sensor network usually schedules a subset of sensor nodes to constitute a tasking cluster to collaboratively track a target.For the goals of saving energy consumption,prolonging network lifetime and improving tracking accuracy,sensor node scheduling for target tracking is indeed a multi-objective optimization problem.In this paper,a multi-objective optimization sensor node scheduling algorithm is proposed.It employs the unscented Kalman filtering algorithm for target state estimation and establishes tracking accuracy index,predicts the energy consumption of candidate sensor nodes,analyzes the relationship between network lifetime and remaining energy balance so as to construct energy efficiency index.Simulation results show that,compared with the existing sensor node scheduling,our proposed algorithm can achieve superior tracking accuracy and energy efficiency. 展开更多
关键词 wireless sensor network (WSN) target tracking sensor scheduling multi-objective optimization
下载PDF
Multi-objective optimization in highway pavement maintenance and rehabilitation project selection and scheduling:A state-of-the-art review 被引量:2
12
作者 Mohammadhosein Pourgholamali Samuel Labi Kumares C.Sinha 《Journal of Road Engineering》 2023年第3期239-251,共13页
The motivation for cost-effective management of highway pavements is evidenced not only by the massive expenditures associated with these activities at a national level but also by the consequences of poor pavement co... The motivation for cost-effective management of highway pavements is evidenced not only by the massive expenditures associated with these activities at a national level but also by the consequences of poor pavement condition on road users.This paper presents a state-of-the-art review of multi-objective optimization(MOO)problems that have been formulated and solution techniques that have been used in selecting and scheduling highway pavement rehabilitation and maintenance activities.First,the paper presents a taxonomy and hierarchy for these activities,the role of funding sources,and levels of jurisdiction.The paper then describes how three different decision mechanisms have been used in past research and practice for project selection and scheduling(historical practices,expert opinion,and explicit mathematical optimization)and identifies the pros and cons of each mechanism.The paper then focuses on the optimization mechanism and presents the types of optimization problems,formulations,and objectives that have been used in the literature.Next,the paper examines various solution algorithms and discusses issues related to their implementation.Finally,the paper identifies some barriers to implementing multi-objective optimization in selecting and scheduling highway pavement rehabilitation and maintenance activities,and makes recommendations to overcome some of these barriers. 展开更多
关键词 multi-objective optimization Highway pavement REHABILITATION Maintenance Project selection Project scheduling Decision mechanism Pavement management
下载PDF
An integer multi-objective optimization model and an enhanced non-dominated sorting genetic algorithm for contraflow scheduling problem
13
作者 李沛恒 楼颖燕 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2399-2405,共7页
To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algor... To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity. 展开更多
关键词 hurricane evacuation contraflow scheduling multi-objective optimization NSGA-II
下载PDF
Weighted-adaptive Inertia Strategy for Multi-objective Scheduling in Multi-clouds
14
作者 Mazen Farid Rohaya Latip +1 位作者 Masnida Hussin Nor Asilah Wati Abdul Hamid 《Computers, Materials & Continua》 SCIE EI 2022年第7期1529-1560,共32页
One of the fundamental problems associated with scheduling workflows on virtual machines in a multi-cloud environment is how to find a near-optimum permutation.The workflow scheduling involves assigning independent co... One of the fundamental problems associated with scheduling workflows on virtual machines in a multi-cloud environment is how to find a near-optimum permutation.The workflow scheduling involves assigning independent computational jobs with conflicting objectives to a set of virtual machines.Most optimization methods for solving non-deterministic polynomial-time hardness(NP-hard)problems deploy multi-objective algorithms.As such,Pareto dominance is one of the most efficient criteria for determining the best solutions within the Pareto front.However,the main drawback of this method is that it requires a reasonably long time to provide an optimum solution.In this paper,a new multi-objective minimum weight algorithm is used to derive the Pareto front.The conflicting objectives considered are reliability,cost,resource utilization,risk probability and makespan.Because multi-objective algorithms select a number of permutations with an optimal trade-off between conflicting objectives,we propose a new decisionmaking approach named the minimum weight optimization(MWO).MWO produces alternative weight to determine the inertia weight by using an adaptive strategy to provide an appropriate alternative for all optimal solutions.This way,consumers’needs and service providers’interests are taken into account.Using standard scientific workflows with conflicting objectives,we compare our proposed multi-objective scheduling algorithm using minimum weigh optimization(MOS-MWO)with multi-objective scheduling algorithm(MOS).Results show that MOS-MWO outperforms MOS in term of QoS satisfaction rate. 展开更多
关键词 Multi-cloud environment multi-objective optimization Pareto optimization workflow scheduling
下载PDF
Job-shop Scheduling with Multi-objectives Based on Genetic Algorithms
15
作者 周亚勤 李蓓智 陈革 《Journal of Donghua University(English Edition)》 EI CAS 2003年第3期57-62,共6页
The technology of production planning and scheduling is one of the critical technologies that decide whether the automated manufacturing systems can get the expected economy. Job shop scheduling belongs to the special... The technology of production planning and scheduling is one of the critical technologies that decide whether the automated manufacturing systems can get the expected economy. Job shop scheduling belongs to the special class of NP-hard problems. Most of the algorithms used to optimize this class of problems have an exponential time; that is, the computation time increases exponentially with problem size. In scheduling study, makespan is often considered as the main objective. In this paper, makespan, the due date request of the key jobs, the availability of the key machine, the average wait-time of the jobs, and the similarities between the jobs and so on are taken into account based on the application of mechanical engineering. The job shop scheduling problem with multi-objectives is analyzed and studied by using genetic algorithms based on the mechanics of genetics and natural selection. In this research, the tactics of the coding and decoding and the design of the genetic operators, along with the description of the mathematic model of the multi-objective functions, are presented. Finally an illu-strative example is given to testify the validity of this algorithm. 展开更多
关键词 job shop scheduling multi-objective optimization genetic algorithms
下载PDF
Intelligent Building Load Scheduling Based on Multi-Objective Multi-Verse Algorithm
16
作者 Jiangyong Liu Jiankang Liu +3 位作者 Lv Fan Lingzhi Yi Huina Song Qingna Zeng 《Energy and Power Engineering》 2021年第4期19-29,共11页
<div style="text-align:justify;"> In the multi-objective of intelligent building load scheduling, aiming at the problem of how to select Pareto frontier scheme for multi-objective optimization algorith... <div style="text-align:justify;"> In the multi-objective of intelligent building load scheduling, aiming at the problem of how to select Pareto frontier scheme for multi-objective optimization algorithm, the current optimal scheme mechanism combined with multi-objective multi-verse algorithm is used to optimize the intelligent building load scheduling. The update mechanism is changed in updating the position of the universe, and the process of correction coding is omitted in the iterative process of the algorithm, which reduces the com-putational complexity. The feasibility and effectiveness of the proposed method are verified by the optimal scheduling experiments of residential loads. </div> 展开更多
关键词 Intelligent Building Load scheduling multi-objective Optimization multi-objective Multi-Verse Algorithm
下载PDF
AMTS:Adaptive Multi-Objective Task Scheduling Strategy in Cloud Computing
17
作者 HE Hua XU Guangquan +1 位作者 PANG Shanchen ZHAO Zenghua 《China Communications》 SCIE CSCD 2016年第4期162-171,共10页
Task scheduling in cloud computing environments is a multi-objective optimization problem, which is NP hard. It is also a challenging problem to find an appropriate trade-off among resource utilization, energy consump... Task scheduling in cloud computing environments is a multi-objective optimization problem, which is NP hard. It is also a challenging problem to find an appropriate trade-off among resource utilization, energy consumption and Quality of Service(QoS) requirements under the changing environment and diverse tasks. Considering both processing time and transmission time, a PSO-based Adaptive Multi-objective Task Scheduling(AMTS) Strategy is proposed in this paper. First, the task scheduling problem is formulated. Then, a task scheduling policy is advanced to get the optimal resource utilization, task completion time, average cost and average energy consumption. In order to maintain the particle diversity, the adaptive acceleration coefficient is adopted. Experimental results show that the improved PSO algorithm can obtain quasi-optimal solutions for the cloud task scheduling problem. 展开更多
关键词 quality of service cloud computing multi-objective task scheduling particle swarm optimization(PSO) small position value(SPV)
下载PDF
Multi-objective integrated optimization based on evolutionary strategy with a dynamic weighting schedule 被引量:2
18
作者 傅武军 朱昌明 叶庆泰 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期204-207,共4页
The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system perf... The evolutionary strategy with a dynamic weighting schedule is proposed to find all the compromised solutions of the multi-objective integrated structure and control optimization problem, where the optimal system performance and control cost are defined by H2 or H∞ norms. During this optimization process, the weights are varying with the increasing generation instead of fixed values. The proposed strategy together with the linear matrix inequality (LMI) or the Riccati controller design method can find a series of uniformly distributed nondominated solutions in a single run. Therefore, this method can greatly reduce the computation intensity of the integrated optimization problem compared with the weight-based single objective genetic algorithm. Active automotive suspension is adopted as an example to illustrate the effectiveness of the proposed method. 展开更多
关键词 integrated design multi-objective optimization evolutionary strategy dynamic weighting schedule suspension system
下载PDF
An improved artificial bee colony algorithm for steelmaking–refining–continuous casting scheduling problem 被引量:12
19
作者 Kunkun Peng Quanke Pan Biao Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第8期1727-1735,共9页
Steelmaking–refining–Continuous Casting(SCC) scheduling is a worldwide problem, which is NP-hard. Effective SCC scheduling algorithms can help to enhance productivity, and thus make significant monetary savings. Thi... Steelmaking–refining–Continuous Casting(SCC) scheduling is a worldwide problem, which is NP-hard. Effective SCC scheduling algorithms can help to enhance productivity, and thus make significant monetary savings. This paper develops an Improved Artificial Bee Colony(IABC) algorithm for the SCC scheduling. In the proposed IABC, charge permutation is employed to represent the solutions. In the population initialization, several solutions with certain quality are produced by a heuristic while others are generated randomly. Two variable neighborhood search neighborhood operators are devised to generate new high-quality solutions for the employed bee and onlooker bee phases, respectively. Meanwhile, in order to enhance the exploitation ability, a control parameter is introduced to conduct the search of onlooker bee phase. Moreover, to enhance the exploration ability,the new generated solutions are accepted with a control acceptance criterion. In the scout bee phase, the solution corresponding to a scout bee is updated by performing three swap operators and three insert operators with equal probability. Computational comparisons against several recent algorithms and a state-of-the-art SCC scheduling algorithm have demonstrated the strength and superiority of the IABC. 展开更多
关键词 Artificial bee colony Steelmaking–refining–continuous casting Hybrid flowshop scheduling Variable neighborhood search
下载PDF
Multi-objective optimization of rolling schedule based on cost function for tandem cold mill 被引量:4
20
作者 陈树宗 张欣 +3 位作者 彭良贵 张殿华 孙杰 刘印忠 《Journal of Central South University》 SCIE EI CAS 2014年第5期1733-1740,共8页
In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and r... In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and rolling speeds for a specified product. The proposed schedule optimization model consists of several single cost fi.mctions, which take rolling force, motor power, inter-stand tension and stand reduction into consideration. The cost function, which can evaluate how far the rolling parameters are from the ideal values, was minimized using the Nelder-Mead simplex method. The proposed rolling schedule optimization method has been applied successfully to the 5-stand tandem cold mill in Tangsteel, and the results from a case study show that the proposed method is superior to those based on empirical formulae. 展开更多
关键词 tandem cold mill multi-object optimization rolling schedule cost function simplex algorithm
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部