This paper is devoted to investigating the solutions of refinement equations of the form Ф(x)=∑α∈Z^s α(α)Ф(Mx-α),x∈R^s,where the vector of functions Ф = (Ф1,… ,Фr)^T is in (L1(R^s))^r, α =(...This paper is devoted to investigating the solutions of refinement equations of the form Ф(x)=∑α∈Z^s α(α)Ф(Mx-α),x∈R^s,where the vector of functions Ф = (Ф1,… ,Фr)^T is in (L1(R^s))^r, α =(α(α))α∈Z^s is an infinitely supported sequence of r × r matrices called the refinement mask, and M is an s × s integer matrix such that lim n→∞ M^-n =0, with m = detM. Some properties about the solutions of refinement equations axe obtained.展开更多
Biorthogonal multiple wavelets are generated from refinable function vectors by using the multiresolution analysis. In this paper we provide a general method for the construction of compactly supported biorthogonal mu...Biorthogonal multiple wavelets are generated from refinable function vectors by using the multiresolution analysis. In this paper we provide a general method for the construction of compactly supported biorthogonal multiple wavelets by refinable function vectors which are the solutions of vector refinement equations of the form $$\varphi (x) = \sum\limits_{\alpha \in \mathbb{Z}^s } {a(\alpha )\varphi (Mx - \alpha ), x \in \mathbb{R}^s } ,$$ where the vector of functions ? = (? 1, …, ? r)T is in $(L_2 (\mathbb{R}^s ))^r ,a = :(a(\alpha ))_{\alpha \in \mathbb{Z}^s } $ is a finitely supported sequence of r × r matrices called the refinement mask, and M is an s × s integer matrix such that lim n→∞ M ?n = 0. Our characterizations are in the general setting and the main results of this paper are the real extensions of some known results.展开更多
The cascade algorithm plays an important role in computer graphics and wavelet analysis. For any initial function φn, a cascade sequence (φn)n∞=1 constructed by the iteration φn=Cnφn-1=1,2.. where Cαis defined b...The cascade algorithm plays an important role in computer graphics and wavelet analysis. For any initial function φn, a cascade sequence (φn)n∞=1 constructed by the iteration φn=Cnφn-1=1,2.. where Cαis defined by g∈Lp(R) In this paper, we characterize the convergence of a cascade sequence in terms of a sequence of functions and in terms of joint spectral radius. As a consequence, it is proved that any convergent cascade sequence has a convergence rate of geometry, i.e., ||φ+1-φn||Lp(R)=O((?)n)for some (?)∈(0.1i). The condition of sum rules for the mask is not required. Finally, an example is presented to illustrate our theory.展开更多
This paper is concerned with multivariate refinement equations of the type where (?) is the unknown function defined on the s-dimensional Euclidean space Rs, a is a finitely supported nonnegative sequence on Zs, and M...This paper is concerned with multivariate refinement equations of the type where (?) is the unknown function defined on the s-dimensional Euclidean space Rs, a is a finitely supported nonnegative sequence on Zs, and M is an s×s dilation matrix with m := |detM|. We characterize the existence of L2-solution of refinement equation in terms of spectral radius of a certain finite matrix or transition operator associated with refinement mask a and dilation matrix M. For s = 1 and M = 2, the sufficient and necessary conditions are obtained to characterize the existence of continuous solution of this refinement equation.展开更多
An approximate solution of the refinement equation was given by its mask, and the approximate sampling theorem for bivariate continuous function was proved by applying the approximate solution . The approximate sampli...An approximate solution of the refinement equation was given by its mask, and the approximate sampling theorem for bivariate continuous function was proved by applying the approximate solution . The approximate sampling function defined uniquely by the mask of the refinement equation is the approximate solution of the equation , a piece-wise linear function , and posseses an explicit computation formula . Therefore the mask of the refinement equation is selected according to one' s requirement, so that one may controll the decay speed of the approximate sampling function .展开更多
基金Supported by the National Natural Science Foundation of China (10071071)
文摘This paper is devoted to investigating the solutions of refinement equations of the form Ф(x)=∑α∈Z^s α(α)Ф(Mx-α),x∈R^s,where the vector of functions Ф = (Ф1,… ,Фr)^T is in (L1(R^s))^r, α =(α(α))α∈Z^s is an infinitely supported sequence of r × r matrices called the refinement mask, and M is an s × s integer matrix such that lim n→∞ M^-n =0, with m = detM. Some properties about the solutions of refinement equations axe obtained.
基金This work was partially supported by the National Natural Science Foundation of China(Grant Nos.10071071 and 10471123)the Mathematical Tianyuan Foundation of the National Natural Science Foundation of China NSF(Grant No.10526036)China Postdoctoral Science Foundation(Grant No.20060391063)
文摘Biorthogonal multiple wavelets are generated from refinable function vectors by using the multiresolution analysis. In this paper we provide a general method for the construction of compactly supported biorthogonal multiple wavelets by refinable function vectors which are the solutions of vector refinement equations of the form $$\varphi (x) = \sum\limits_{\alpha \in \mathbb{Z}^s } {a(\alpha )\varphi (Mx - \alpha ), x \in \mathbb{R}^s } ,$$ where the vector of functions ? = (? 1, …, ? r)T is in $(L_2 (\mathbb{R}^s ))^r ,a = :(a(\alpha ))_{\alpha \in \mathbb{Z}^s } $ is a finitely supported sequence of r × r matrices called the refinement mask, and M is an s × s integer matrix such that lim n→∞ M ?n = 0. Our characterizations are in the general setting and the main results of this paper are the real extensions of some known results.
基金This work was supported by the National Natural Science Foundation of China(Grant No.10171007).
文摘The cascade algorithm plays an important role in computer graphics and wavelet analysis. For any initial function φn, a cascade sequence (φn)n∞=1 constructed by the iteration φn=Cnφn-1=1,2.. where Cαis defined by g∈Lp(R) In this paper, we characterize the convergence of a cascade sequence in terms of a sequence of functions and in terms of joint spectral radius. As a consequence, it is proved that any convergent cascade sequence has a convergence rate of geometry, i.e., ||φ+1-φn||Lp(R)=O((?)n)for some (?)∈(0.1i). The condition of sum rules for the mask is not required. Finally, an example is presented to illustrate our theory.
基金supported by National Natural Science Foundation of China(Grant Nos.10071071&10471123).
文摘This paper is concerned with multivariate refinement equations of the type where (?) is the unknown function defined on the s-dimensional Euclidean space Rs, a is a finitely supported nonnegative sequence on Zs, and M is an s×s dilation matrix with m := |detM|. We characterize the existence of L2-solution of refinement equation in terms of spectral radius of a certain finite matrix or transition operator associated with refinement mask a and dilation matrix M. For s = 1 and M = 2, the sufficient and necessary conditions are obtained to characterize the existence of continuous solution of this refinement equation.
基金the NSF of Henan Province (984051900)the NSF of Henan Education Committee (98110015)the Excellent Teacher Foundation of High School in Henan Province
文摘An approximate solution of the refinement equation was given by its mask, and the approximate sampling theorem for bivariate continuous function was proved by applying the approximate solution . The approximate sampling function defined uniquely by the mask of the refinement equation is the approximate solution of the equation , a piece-wise linear function , and posseses an explicit computation formula . Therefore the mask of the refinement equation is selected according to one' s requirement, so that one may controll the decay speed of the approximate sampling function .