Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect o...Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect on the solidification structure.The mechanical properties of the samples were investigated through compression tests.The results show that Ca is mostly dissolved in the matrix and the Mg_(2)Ca phase is formed under high pressure,but it is mainly segregated among dendrites under atmospheric pressure.The Mg_(2)Ca particles are effective heterogeneous nuclei ofα-Mg crystals,which significantly increases the number of crystal nuclei and refines the solidification structure of the alloy,with the grain size reduced to 22μm at 6 GPa.As no Ca segregating among the dendrites exists,more Zn is dissolved in the matrix.Consequently,the intergranular second phase changes from MgZn with a higher Zn/Mg ratio to Mg7Zn3 with a lower Zn/Mg ratio.The volume fraction of the intergranular second phase also increases to 22%.Owing to the combined strengthening of grain refinement,solid solution,and dispersion,the compression strength of the Mg-Zn-Cu-Zr-Ca alloy solidified under 6 GPa is up to 520 MPa.展开更多
The surface of AZ91 D magnesium alloy was remelted by plasma beam. The microstructure, composition, hardness, wear and corrosion resistance of the plasma remelted layer(PRL) were characterized. The results show that...The surface of AZ91 D magnesium alloy was remelted by plasma beam. The microstructure, composition, hardness, wear and corrosion resistance of the plasma remelted layer(PRL) were characterized. The results show that there is extremely fine and dendrite structure in the PRL at low magnification observation, which is still composed of α-Mg and β-Mg17Al12 phases. But at high magnification observation, the microstructure of the PRL is equiaxial crystalline grains with size of 3-5 μm. And also the content of α-Mg phase decreases while that of β-Mg17Al12 increases and distributes more uniformly in α-Mg matrix compared with the substrate. The hardness of the PRL is much higher than that of the substrate. There are plastic deformation, grains uprooting and tearing evidence with tiny even dimples in the tensile fracture of the PRL, which are different from the substrate. Furthermore, the surface wear and corrosion resistance of AZ91 D are improved significantly after plasma remelting.展开更多
Peripheral coarse grain(PCG)structure is a common microstructural defect appearing in the aluminum alloy extrusion process,which seriously affects the mechanical properties of the profiles.In this work,a series of ext...Peripheral coarse grain(PCG)structure is a common microstructural defect appearing in the aluminum alloy extrusion process,which seriously affects the mechanical properties of the profiles.In this work,a series of extrusion experiments and numerical simulations were conducted to investigate the influence of billet temperature and ram speed on the microstructure,mechanical properties and thickness of PCG layers of 6005A aluminum alloy profiles.The mechanism of abnormal grain growth(AGG)occurring on the surface and in the core of profiles was revealed.The result showed that lower ram speed could sup-press the formation of coarse grains.The AGG on the surface of the profiles was activated by the shear deformation and lattice distortion derived from the friction on the interface between the profile and die.When the billet was heated to a relatively high temperature,dynamic recrystallization(DRX)was dominant,and the Cube{100}<100>and R-Cube{100}<110>grains underwent abnormal growth to form surface coarse grains.When the billet was heated to a relatively low temperature,the degree of static recrystallization(SRX)became stronger,and the Goss{110}<100>and R-Cube{100}<110>grains under-went abnormal growth to form surface coarse grains.The AGG in the core of profiles was activated by the large grain boundary misorientation and a strain gradient formed because the Cube{100}<100>re-crystallized grains were surrounded by the Copper{112}<111>and Brass{110}<112>deformed grains.The second phases in the 6005A aluminum alloy extrusion profiles were mainlyβ(Mg_(2) Si)and AlFeMnCrSi.As the billet temperature increased,moreβphases dissolved into the aluminum matrix,thus enhancing the strength and hardness of the profiles.As the ram speed decreased,the thickness of PCG layers reduced,thus resulting in higher strength and hardness of the profiles.Due to the integrated effect of solution strengthening and grain refinement strengthening mechanisms,the combination of extrusion parameters for the profile to obtain the best mechanical properties was determined as 540℃×0.5 mm/s.展开更多
The fine grained structures of nickel-free high nitrogen austenitic stainless steels had been obtained by means of cold rolling and subsequent annealing. The relationship between microstructure and mechanical properti...The fine grained structures of nickel-free high nitrogen austenitic stainless steels had been obtained by means of cold rolling and subsequent annealing. The relationship between microstructure and mechanical properties and gain size of nickel-free high nitrogen austenitic stainless steels was examined. High strength and good ductility of the steel were found. In the grain size range, the Hall-Petch dependency for yield stress, tensile strength, and hardness was valid for grain size ranges for the nickel-free high nitrogen austenitic stainless steel. In the present study, the ductility of cold rolled nickel-free high nitrogen austenitic stainless steel decreased with annealing time when the grain size was refined. The fracture surfaces of the tensile specimens in the grain size range were covered with dimples as usually seen in a ductile fracture mode.展开更多
By measuring the expansion curves of a C-Mn steel at different cooling rates by using an MMS-300 thermo- mechanical simulator, continuous cooling transformation curves were obtained. The new process "ultra fast cool...By measuring the expansion curves of a C-Mn steel at different cooling rates by using an MMS-300 thermo- mechanical simulator, continuous cooling transformation curves were obtained. The new process "ultra fast cooling+ laminar cooling" was simulated and the effects of ultra fast cooling ending temperature on microstructure had also been investigated. The hot rolling experiment was done by adopting "high temperature rolling-[-forepart ultra fast cooling" technologies at laboratory scale. The results revealed that ultra fast cooling can delay the decrease of disloca- tion density and refine ferrite grains. Diversity control of the microstructure and phase transformation strengthening can be realized by changing the ultra fast cooling ending temperature. With the decrease of ultra fast cooling ending temperature, the strength and toughness increase, but plasticity does not decrease obviously. The new technique can improve the yield strength by over 50 MPa. Therefore, the upgrade of mechanical properties of C-Mn steel can be realized by using "high temperature rolling+ ultra fast cooling+laminar cooling" technique. Compared with "low temperature rolling with large deformation degree" technique, this new technology can decrease the roiling force and in- crease the production efficiency.展开更多
基金financial supports from the National Natural Science Foundation of China(Nos.51675092,51775099)the Natural Science Foundation of Hebei Province,China(Nos.E2018501032,E2018501033)。
文摘Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect on the solidification structure.The mechanical properties of the samples were investigated through compression tests.The results show that Ca is mostly dissolved in the matrix and the Mg_(2)Ca phase is formed under high pressure,but it is mainly segregated among dendrites under atmospheric pressure.The Mg_(2)Ca particles are effective heterogeneous nuclei ofα-Mg crystals,which significantly increases the number of crystal nuclei and refines the solidification structure of the alloy,with the grain size reduced to 22μm at 6 GPa.As no Ca segregating among the dendrites exists,more Zn is dissolved in the matrix.Consequently,the intergranular second phase changes from MgZn with a higher Zn/Mg ratio to Mg7Zn3 with a lower Zn/Mg ratio.The volume fraction of the intergranular second phase also increases to 22%.Owing to the combined strengthening of grain refinement,solid solution,and dispersion,the compression strength of the Mg-Zn-Cu-Zr-Ca alloy solidified under 6 GPa is up to 520 MPa.
基金Projects(51072104,51272141)supported by the National Natural Science Foundation of ChinaProject(ts20110828)supported by the Taishan Scholars Project of Shandong Province,ChinaProject(2015AA034404)supported by the Ministry of Science and Technology of China
文摘The surface of AZ91 D magnesium alloy was remelted by plasma beam. The microstructure, composition, hardness, wear and corrosion resistance of the plasma remelted layer(PRL) were characterized. The results show that there is extremely fine and dendrite structure in the PRL at low magnification observation, which is still composed of α-Mg and β-Mg17Al12 phases. But at high magnification observation, the microstructure of the PRL is equiaxial crystalline grains with size of 3-5 μm. And also the content of α-Mg phase decreases while that of β-Mg17Al12 increases and distributes more uniformly in α-Mg matrix compared with the substrate. The hardness of the PRL is much higher than that of the substrate. There are plastic deformation, grains uprooting and tearing evidence with tiny even dimples in the tensile fracture of the PRL, which are different from the substrate. Furthermore, the surface wear and corrosion resistance of AZ91 D are improved significantly after plasma remelting.
基金financially supported by the National Natural Science Foundation of China(Grant No.51735008)the Key Re-search and Development Program of Shandong Province(Grant No.2021ZLGX01)the Major Scientific and Technological Innova-tion Project of Shandong Province(Grant No.2019TSLH0102).
文摘Peripheral coarse grain(PCG)structure is a common microstructural defect appearing in the aluminum alloy extrusion process,which seriously affects the mechanical properties of the profiles.In this work,a series of extrusion experiments and numerical simulations were conducted to investigate the influence of billet temperature and ram speed on the microstructure,mechanical properties and thickness of PCG layers of 6005A aluminum alloy profiles.The mechanism of abnormal grain growth(AGG)occurring on the surface and in the core of profiles was revealed.The result showed that lower ram speed could sup-press the formation of coarse grains.The AGG on the surface of the profiles was activated by the shear deformation and lattice distortion derived from the friction on the interface between the profile and die.When the billet was heated to a relatively high temperature,dynamic recrystallization(DRX)was dominant,and the Cube{100}<100>and R-Cube{100}<110>grains underwent abnormal growth to form surface coarse grains.When the billet was heated to a relatively low temperature,the degree of static recrystallization(SRX)became stronger,and the Goss{110}<100>and R-Cube{100}<110>grains under-went abnormal growth to form surface coarse grains.The AGG in the core of profiles was activated by the large grain boundary misorientation and a strain gradient formed because the Cube{100}<100>re-crystallized grains were surrounded by the Copper{112}<111>and Brass{110}<112>deformed grains.The second phases in the 6005A aluminum alloy extrusion profiles were mainlyβ(Mg_(2) Si)and AlFeMnCrSi.As the billet temperature increased,moreβphases dissolved into the aluminum matrix,thus enhancing the strength and hardness of the profiles.As the ram speed decreased,the thickness of PCG layers reduced,thus resulting in higher strength and hardness of the profiles.Due to the integrated effect of solution strengthening and grain refinement strengthening mechanisms,the combination of extrusion parameters for the profile to obtain the best mechanical properties was determined as 540℃×0.5 mm/s.
基金Item Sponsored by Key Program of National Natural Science Foundation of China (50534010)
文摘The fine grained structures of nickel-free high nitrogen austenitic stainless steels had been obtained by means of cold rolling and subsequent annealing. The relationship between microstructure and mechanical properties and gain size of nickel-free high nitrogen austenitic stainless steels was examined. High strength and good ductility of the steel were found. In the grain size range, the Hall-Petch dependency for yield stress, tensile strength, and hardness was valid for grain size ranges for the nickel-free high nitrogen austenitic stainless steel. In the present study, the ductility of cold rolled nickel-free high nitrogen austenitic stainless steel decreased with annealing time when the grain size was refined. The fracture surfaces of the tensile specimens in the grain size range were covered with dimples as usually seen in a ductile fracture mode.
基金Item Sponsored by National Natural Science Foundation of China(51004037)
文摘By measuring the expansion curves of a C-Mn steel at different cooling rates by using an MMS-300 thermo- mechanical simulator, continuous cooling transformation curves were obtained. The new process "ultra fast cooling+ laminar cooling" was simulated and the effects of ultra fast cooling ending temperature on microstructure had also been investigated. The hot rolling experiment was done by adopting "high temperature rolling-[-forepart ultra fast cooling" technologies at laboratory scale. The results revealed that ultra fast cooling can delay the decrease of disloca- tion density and refine ferrite grains. Diversity control of the microstructure and phase transformation strengthening can be realized by changing the ultra fast cooling ending temperature. With the decrease of ultra fast cooling ending temperature, the strength and toughness increase, but plasticity does not decrease obviously. The new technique can improve the yield strength by over 50 MPa. Therefore, the upgrade of mechanical properties of C-Mn steel can be realized by using "high temperature rolling+ ultra fast cooling+laminar cooling" technique. Compared with "low temperature rolling with large deformation degree" technique, this new technology can decrease the roiling force and in- crease the production efficiency.