Dissolved organic matter(DOM)in refinery wastewater is an extremely complex mixture of various organic compounds.Using mass spectrometry,it is impossible to characterize all of the DOM molecules with only one ionizati...Dissolved organic matter(DOM)in refinery wastewater is an extremely complex mixture of various organic compounds.Using mass spectrometry,it is impossible to characterize all of the DOM molecules with only one ionization source.In this study,negative-ion,electrospray ionization(ESI),positive-ion ESI,and positive-ion atmospheric pressure photoionization(APPI)were coupled with Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS)to analyze the molecular composition of DOM in a refinery wastewater stream during the treatment process.There were obvious differences in the heteroatom composition,number of DOM constituents,and chemical properties in refinery wastewater under the three ionization modes.Acidic CHO and CHOS compounds detected by(+)ESI,basic CHN and CHON compounds detected by(þ)ESI,and hydrocarbons detected by(+)APPI were analyzed to determine the molecular transformations that occurred during treatment.In an anaerobic biological treatment process,acidic CHO and CHOS compounds with a high oxygen content were preferentially removed,and acidic CHO and CHOS compounds with a low oxygen content were produced.In an aerobic biological process,acidic CHO and CHOS compounds with a low oxygen content were preferentially removed,and acidic CHO and CHOS compounds with a high oxygen content were produced.The whole biological treatment process has a poor removal efficiency for CHN and CHON compounds,and hydrocarbons.An activated carbon(AC)adsorption process removed different heteroatom compounds mainly with a low oxygen content for acidic and basic compounds.The transformation mechanism of CHO and CHOS compounds in the biological treatment process was analyzed by the Kendrick mass defect(KMD)theory and a mass difference network analysis.In the anaerobic process,large amounts of oxygenated CHO and CHOS compounds were degraded by decarboxylation,deoxydation,demethoxylation,and dehydration reactions,and converted to lower oxygen content compounds.In the aerobic processes,these low oxygen CHO and CHOS compounds mainly underwent carboxylation and oxidation reactions.This study determined the transformation characteristics and mechanisms of different types of organic compounds in refinery wastewater during the treatment process.The results provide guidance for the design and optimization of technologies for refinery wastewater treatment.展开更多
The slightly polluted wastewater from oil refinery contains some COD, oil pollutants and suspended solids (SS). A small-scale fixed film biological aerated filter (BAF) process was used to treat the wastewater. Th...The slightly polluted wastewater from oil refinery contains some COD, oil pollutants and suspended solids (SS). A small-scale fixed film biological aerated filter (BAF) process was used to treat the wastewater. The influences of hydraulic retention time (HRT), air/water volume flow ratio and backwashing cycle on treatment efficiencies were investigated. The wastewater was treated by the BAF process under optimal conditions: the HRT of 1.0 h, the air/water volume flow ratio of about 5 : 1 and the backwashing cycle of every 4-7 days. The results showed that the average removal efficiency of COD, oil pollutants and SS was 84.5%, 94.0% and 83.4%, respectively. And the average effluent concentration of COD, oil pollutants and SS was 12.5, 0.27, 14.5 mg·L^-1, respectively. The experimental results demonstrated that the BAF process is a suitable and highly efficient method to treat the wastewater.展开更多
Wastewater from super viscous oil processing cannot be effectively treated by conventional wastewater treatment plants in refineries because of its high concentration of various organic pollutants. In order to resolve...Wastewater from super viscous oil processing cannot be effectively treated by conventional wastewater treatment plants in refineries because of its high concentration of various organic pollutants. In order to resolve this problem, a number of investigations were conducted in our work to understand the physicochemical properties, sedimentation, demulsification and pretreatment of such super viscous oil refinery wastewater. The results showed that the key issues for pretreatment of this wastewater were: (1) Optimized process parameters were used in the sedimentation and demulsification processes for oil removal to effectively recover oil and remove scum from wastewater; (2) A suitable flocculation process was selected to minimize oil, suspended solids (SS) and chemical oxygen demand (CODcr). A pretreatment process including three continuous steps: oil removal by sedimentation, oil removal by demulsification, and flotation separation, was proposed and applied in Liaohe Petrochemical Company, PetroChina and the oil content in effluents was less than 200 mg/L and CODcr less than 2,500 mg/L, which completely met the requirement for influent of the conventional wastewater treatment plant, and the recovered super viscous oil reached 5,873 tons in the initial year in Liaohe Petrochemical Company, PetroChina.展开更多
Novel Mn–Fe–Mg-and Mn–Fe–Ce-loaded alumina(Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3) were developed to catalytically ozonate reverse osmosis concentrates generated from petroleum refinery wastewaters(PRW-ROC). Hi...Novel Mn–Fe–Mg-and Mn–Fe–Ce-loaded alumina(Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3) were developed to catalytically ozonate reverse osmosis concentrates generated from petroleum refinery wastewaters(PRW-ROC). Highly dispersed 100–300-nm deposits of composite multivalent metal oxides of Mn(Mn^2+), Mn^3+,and Mn^4+, Fe(Fe^2+)and Fe^3+ and Mg(Mg^2+), or Ce(Ce^4+) were achieved on Al2O3 supports. The developed Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3 exhibited higher catalytic activity during the ozonation of PRW-ROC than Mn–Fe/Al2O3, Mn/Al2O-3, Fe/Al2O3, and Al2O3. Chemical oxygen demand removal by Mn–Fe–Mg/Al2O3-or Mn–Fe–Ce/Al2O3-catalyzed ozonation increased by 23.9% and23.2%, respectively, in comparison with single ozonation.Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3 notably promoted áOH generation and áOH-mediated oxidation. This study demonstrated the potential use of composite metal oxide-loaded Al2O3 in advanced treatment of bio-recalcitrant wastewaters.展开更多
Aerobic granular sludge technology has great potential for the treatment of petroleum refinery wastewater.However,strategies to shorten the granulation time and improvement the stability still need to be developed.In ...Aerobic granular sludge technology has great potential for the treatment of petroleum refinery wastewater.However,strategies to shorten the granulation time and improvement the stability still need to be developed.In this work,biochar was prepared from waste petroleum activated sludge(biochar-WPS) and used in a sequencing batch reactor for the treatment of petroleum refinery wastewater.Biochar-WPS presented the surface area of 229.77 m2/g,pore volume of 0.28 cm3/g,H/C and O/C atomic ratios of 0.42 and 0.21,respectively.The porous structure and a high degree of hydrophilicity were found to facilitate microbial colonization and adhesion as well as particle aggregation.Application of biochar-WPS resulted in the formation of more substantial and stable aerobic granules(~66% of granules> 0.46 mm diameter) 15 days earlier compared with the control.The addition of biochar-WPS enhanced the average removal efficiency of chemical organic demand(~3%),oil(~4%)and total nitrogen(~10%) over the control.Increased microbial richness and diversity were observed within the formed granules and had an increased(~4%) proportion of denitrifying bacteria.These results indicate that an aerobic granulation mechanism using biochar-WPS is a feasible option for the treatment of petroleum refinery wastewater.展开更多
TOR (Tema oil refinery) is the only petroleum refinery in Ghana. To assess the quality of the wastewater, wastewater samples taken from three points of discharge into the treatment plant and the treated effluent wer...TOR (Tema oil refinery) is the only petroleum refinery in Ghana. To assess the quality of the wastewater, wastewater samples taken from three points of discharge into the treatment plant and the treated effluent were analyzed for physico-chemical characteristics. The levels of the pH, temperature, conductivity, COD (Chemical Oxygen Demand), TDS (Total Dissolved Solids), TSS (Total Suspended Solids) and phenol were assessed from January to June, 2011. The results obtained indicate varied levels of contaminants in both the untreated and treated wastewater. The average values of the treated effluent parameters analyzed were 38 ℃, 6,258 μs.cm-1, 314 mg-L-1, 115 mg.L-1, 2,689 mg-L-1 and 1 mg.L-1 for the temperature, conductivity, COD, TDS, TSS and phenol, respectively. The results suggest that both the raw wastewater and the treated effluent did not meet the discharge limit set by Ghana Environmental Protection Agency. Therefore, the treated effluent required additional treatment before it can be discharged into the environment. This suggests that the wastewater treatment plant of TOR is ineffective for the type of wastewater produced.展开更多
The aim of the present work is to remove heavy metals (copper, manganese, and zinc) from industrial wastewater of Baiji refinery using GAC (granular activated carbon). The most important factors affecting adsorpti...The aim of the present work is to remove heavy metals (copper, manganese, and zinc) from industrial wastewater of Baiji refinery using GAC (granular activated carbon). The most important factors affecting adsorption process have been studied, which are granular activated carbon thickness, H, inlet pollutant concentration, Cv, and liquid hourly space velocity, LHSV. All experiments were performed under constant temperature at 25℃ and pH = 7. The experimental apparatus was designed and constructed to enable controlling of the operating conditions. Employing five levels for each of H and LHSV and three levels for Co required 75 runs for each metal. Box-Wilson method was used to reduce the number of experiments to 15 for each metal. The results indicated that copper, manganese, and zinc can be completely removed from wastewater using activated carbon. However, breakthrough time for zinc is low. It is also shown that breakthrough time (TB) and exhaustion time (TE) are inversely proportional with pollutant concentration and LHSV (liquid hour space velocity) while it is directly proportional with the thickness of activated carbon column.展开更多
The level of chemical oxygen demand(COD)is an important index to evaluate whether sewage meets the discharge requirements,so corresponding tests should be carried out before discharge.Fourier transform infrared spectr...The level of chemical oxygen demand(COD)is an important index to evaluate whether sewage meets the discharge requirements,so corresponding tests should be carried out before discharge.Fourier transform infrared spectroscopy(FTIR)and attenuated total reflectance(ATR)can detect COD in sewage effectively,which has advantages over conventional chemical analysis methods.And the selection of characteristic bands was one of the key links in the application of FTIR/ATR spectroscopy.In this work,based on the moving window partial least-squares(MWPLS)regression to select a characteristic wavelength,a method of equivalent wavelength selection was proposed combining with paired t-test equivalent concept.The results showed that the prediction effect of the selected wavelength was very close to that of the MWPLS method,while the number of wavelength points was much smaller.SEPAve,RP,Ave,SEPStd,and RP,Std which characterized the modeling effect were 26.3 mg L^-1,0.969,3.49 mg L^-1,and 0.006,respectively.The validation effect V-SEP and V-RP were 28.64 mg L^-1 and 0.960,respectively.The selected waveband was between 1809 cm^-1 and 1568 cm^-1.The method was of more reference value for the design of FTIR/ATR spectral instrument for COD detection.展开更多
For dealing with high-salinity wastewater in the refinery, the high cost of driving heat source is the disadvantage of multi-effect distillation (MED) so it is of great importance to evaluate the performance of low-te...For dealing with high-salinity wastewater in the refinery, the high cost of driving heat source is the disadvantage of multi-effect distillation (MED) so it is of great importance to evaluate the performance of low-temperature heat source for conducting MED and select the optimal temperature for it. Both the MED and the low-temperature heat sources studied in this paper were from a typical refinery located in northwestern China. Besides, a new methodology to evaluate heat sources as the optimal candidate was proposed for MED based on the grey system theory. Five process units, which included 18 fluids of the refinery, were named as the evaluation projects. Three factors, which included safety effects, total costs and characteristics of low-temperature heat sources were determined as the evaluation indexes, the values of which were established through the analyses. The results obtained through the grey correlation analyses have revealed that the grey correlation degrees of these units were 0.661(AVDU), 0.732 (#1 FCCU), 0.618 (#2 FCCU), 0.535 (#1 DCU), and 0.572 (#2 DCU), respectively. Thus, the optimal heat source was provided from #1 FCCU. Through further analyses of the fluids from #1 FCCU, the grey correlation degrees of the fluids were 0.597 (oil and gas at top of tower), 0.714 (recycle oil and gas), and 0.512 (diesel), respectively. Thus, the optimal heat source was the oil and gas recycle stream.展开更多
基金This work was supported by the National Key Research and Development Program of China(2018YFA0605800 and 2020YFA0607600)the National Natural Science Foundation of China(42003059)Science Foundation of China University of Petroleum,Beijing(No.2462021XKBH005).
文摘Dissolved organic matter(DOM)in refinery wastewater is an extremely complex mixture of various organic compounds.Using mass spectrometry,it is impossible to characterize all of the DOM molecules with only one ionization source.In this study,negative-ion,electrospray ionization(ESI),positive-ion ESI,and positive-ion atmospheric pressure photoionization(APPI)were coupled with Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS)to analyze the molecular composition of DOM in a refinery wastewater stream during the treatment process.There were obvious differences in the heteroatom composition,number of DOM constituents,and chemical properties in refinery wastewater under the three ionization modes.Acidic CHO and CHOS compounds detected by(+)ESI,basic CHN and CHON compounds detected by(þ)ESI,and hydrocarbons detected by(+)APPI were analyzed to determine the molecular transformations that occurred during treatment.In an anaerobic biological treatment process,acidic CHO and CHOS compounds with a high oxygen content were preferentially removed,and acidic CHO and CHOS compounds with a low oxygen content were produced.In an aerobic biological process,acidic CHO and CHOS compounds with a low oxygen content were preferentially removed,and acidic CHO and CHOS compounds with a high oxygen content were produced.The whole biological treatment process has a poor removal efficiency for CHN and CHON compounds,and hydrocarbons.An activated carbon(AC)adsorption process removed different heteroatom compounds mainly with a low oxygen content for acidic and basic compounds.The transformation mechanism of CHO and CHOS compounds in the biological treatment process was analyzed by the Kendrick mass defect(KMD)theory and a mass difference network analysis.In the anaerobic process,large amounts of oxygenated CHO and CHOS compounds were degraded by decarboxylation,deoxydation,demethoxylation,and dehydration reactions,and converted to lower oxygen content compounds.In the aerobic processes,these low oxygen CHO and CHOS compounds mainly underwent carboxylation and oxidation reactions.This study determined the transformation characteristics and mechanisms of different types of organic compounds in refinery wastewater during the treatment process.The results provide guidance for the design and optimization of technologies for refinery wastewater treatment.
基金Supported by the Foundation of Science and Technology Project of Guangdong Province (2004B33301001)
文摘The slightly polluted wastewater from oil refinery contains some COD, oil pollutants and suspended solids (SS). A small-scale fixed film biological aerated filter (BAF) process was used to treat the wastewater. The influences of hydraulic retention time (HRT), air/water volume flow ratio and backwashing cycle on treatment efficiencies were investigated. The wastewater was treated by the BAF process under optimal conditions: the HRT of 1.0 h, the air/water volume flow ratio of about 5 : 1 and the backwashing cycle of every 4-7 days. The results showed that the average removal efficiency of COD, oil pollutants and SS was 84.5%, 94.0% and 83.4%, respectively. And the average effluent concentration of COD, oil pollutants and SS was 12.5, 0.27, 14.5 mg·L^-1, respectively. The experimental results demonstrated that the BAF process is a suitable and highly efficient method to treat the wastewater.
文摘Wastewater from super viscous oil processing cannot be effectively treated by conventional wastewater treatment plants in refineries because of its high concentration of various organic pollutants. In order to resolve this problem, a number of investigations were conducted in our work to understand the physicochemical properties, sedimentation, demulsification and pretreatment of such super viscous oil refinery wastewater. The results showed that the key issues for pretreatment of this wastewater were: (1) Optimized process parameters were used in the sedimentation and demulsification processes for oil removal to effectively recover oil and remove scum from wastewater; (2) A suitable flocculation process was selected to minimize oil, suspended solids (SS) and chemical oxygen demand (CODcr). A pretreatment process including three continuous steps: oil removal by sedimentation, oil removal by demulsification, and flotation separation, was proposed and applied in Liaohe Petrochemical Company, PetroChina and the oil content in effluents was less than 200 mg/L and CODcr less than 2,500 mg/L, which completely met the requirement for influent of the conventional wastewater treatment plant, and the recovered super viscous oil reached 5,873 tons in the initial year in Liaohe Petrochemical Company, PetroChina.
基金supported in part by the National Science and Technology Major Project of China (No. 2016ZX05040-003)
文摘Novel Mn–Fe–Mg-and Mn–Fe–Ce-loaded alumina(Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3) were developed to catalytically ozonate reverse osmosis concentrates generated from petroleum refinery wastewaters(PRW-ROC). Highly dispersed 100–300-nm deposits of composite multivalent metal oxides of Mn(Mn^2+), Mn^3+,and Mn^4+, Fe(Fe^2+)and Fe^3+ and Mg(Mg^2+), or Ce(Ce^4+) were achieved on Al2O3 supports. The developed Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3 exhibited higher catalytic activity during the ozonation of PRW-ROC than Mn–Fe/Al2O3, Mn/Al2O-3, Fe/Al2O3, and Al2O3. Chemical oxygen demand removal by Mn–Fe–Mg/Al2O3-or Mn–Fe–Ce/Al2O3-catalyzed ozonation increased by 23.9% and23.2%, respectively, in comparison with single ozonation.Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3 notably promoted áOH generation and áOH-mediated oxidation. This study demonstrated the potential use of composite metal oxide-loaded Al2O3 in advanced treatment of bio-recalcitrant wastewaters.
基金supported in part by the Science Foundation of China University of Petroleum-Beijing,China(No.2462018BJB001 and 2462020XKJS04)the National Natural Science Foundation of China,China(No.21776307)the Independent Project Program of State Key Laboratory of Petroleum Pollution Control,China(Grant No.PPCIP2017004)。
文摘Aerobic granular sludge technology has great potential for the treatment of petroleum refinery wastewater.However,strategies to shorten the granulation time and improvement the stability still need to be developed.In this work,biochar was prepared from waste petroleum activated sludge(biochar-WPS) and used in a sequencing batch reactor for the treatment of petroleum refinery wastewater.Biochar-WPS presented the surface area of 229.77 m2/g,pore volume of 0.28 cm3/g,H/C and O/C atomic ratios of 0.42 and 0.21,respectively.The porous structure and a high degree of hydrophilicity were found to facilitate microbial colonization and adhesion as well as particle aggregation.Application of biochar-WPS resulted in the formation of more substantial and stable aerobic granules(~66% of granules> 0.46 mm diameter) 15 days earlier compared with the control.The addition of biochar-WPS enhanced the average removal efficiency of chemical organic demand(~3%),oil(~4%)and total nitrogen(~10%) over the control.Increased microbial richness and diversity were observed within the formed granules and had an increased(~4%) proportion of denitrifying bacteria.These results indicate that an aerobic granulation mechanism using biochar-WPS is a feasible option for the treatment of petroleum refinery wastewater.
文摘TOR (Tema oil refinery) is the only petroleum refinery in Ghana. To assess the quality of the wastewater, wastewater samples taken from three points of discharge into the treatment plant and the treated effluent were analyzed for physico-chemical characteristics. The levels of the pH, temperature, conductivity, COD (Chemical Oxygen Demand), TDS (Total Dissolved Solids), TSS (Total Suspended Solids) and phenol were assessed from January to June, 2011. The results obtained indicate varied levels of contaminants in both the untreated and treated wastewater. The average values of the treated effluent parameters analyzed were 38 ℃, 6,258 μs.cm-1, 314 mg-L-1, 115 mg.L-1, 2,689 mg-L-1 and 1 mg.L-1 for the temperature, conductivity, COD, TDS, TSS and phenol, respectively. The results suggest that both the raw wastewater and the treated effluent did not meet the discharge limit set by Ghana Environmental Protection Agency. Therefore, the treated effluent required additional treatment before it can be discharged into the environment. This suggests that the wastewater treatment plant of TOR is ineffective for the type of wastewater produced.
文摘The aim of the present work is to remove heavy metals (copper, manganese, and zinc) from industrial wastewater of Baiji refinery using GAC (granular activated carbon). The most important factors affecting adsorption process have been studied, which are granular activated carbon thickness, H, inlet pollutant concentration, Cv, and liquid hourly space velocity, LHSV. All experiments were performed under constant temperature at 25℃ and pH = 7. The experimental apparatus was designed and constructed to enable controlling of the operating conditions. Employing five levels for each of H and LHSV and three levels for Co required 75 runs for each metal. Box-Wilson method was used to reduce the number of experiments to 15 for each metal. The results indicated that copper, manganese, and zinc can be completely removed from wastewater using activated carbon. However, breakthrough time for zinc is low. It is also shown that breakthrough time (TB) and exhaustion time (TE) are inversely proportional with pollutant concentration and LHSV (liquid hour space velocity) while it is directly proportional with the thickness of activated carbon column.
基金This work was financially supported by the Natural Science Foundation of Hainan Province(417087)the Key Research and Development Program of Hainan Province(ZDYF2018007)Research Fund for Advanced Talents of Hainan University(No.kyqd1577).
文摘The level of chemical oxygen demand(COD)is an important index to evaluate whether sewage meets the discharge requirements,so corresponding tests should be carried out before discharge.Fourier transform infrared spectroscopy(FTIR)and attenuated total reflectance(ATR)can detect COD in sewage effectively,which has advantages over conventional chemical analysis methods.And the selection of characteristic bands was one of the key links in the application of FTIR/ATR spectroscopy.In this work,based on the moving window partial least-squares(MWPLS)regression to select a characteristic wavelength,a method of equivalent wavelength selection was proposed combining with paired t-test equivalent concept.The results showed that the prediction effect of the selected wavelength was very close to that of the MWPLS method,while the number of wavelength points was much smaller.SEPAve,RP,Ave,SEPStd,and RP,Std which characterized the modeling effect were 26.3 mg L^-1,0.969,3.49 mg L^-1,and 0.006,respectively.The validation effect V-SEP and V-RP were 28.64 mg L^-1 and 0.960,respectively.The selected waveband was between 1809 cm^-1 and 1568 cm^-1.The method was of more reference value for the design of FTIR/ATR spectral instrument for COD detection.
基金the Natural Science Foundation(Grant No.51178463)the Fundamental Research Funds for the Central Universities(10CX04018A)of China for financial support of this studythe Environment and Safety Technology Center of China University of Petroleum for its technical and logistical assistance
文摘For dealing with high-salinity wastewater in the refinery, the high cost of driving heat source is the disadvantage of multi-effect distillation (MED) so it is of great importance to evaluate the performance of low-temperature heat source for conducting MED and select the optimal temperature for it. Both the MED and the low-temperature heat sources studied in this paper were from a typical refinery located in northwestern China. Besides, a new methodology to evaluate heat sources as the optimal candidate was proposed for MED based on the grey system theory. Five process units, which included 18 fluids of the refinery, were named as the evaluation projects. Three factors, which included safety effects, total costs and characteristics of low-temperature heat sources were determined as the evaluation indexes, the values of which were established through the analyses. The results obtained through the grey correlation analyses have revealed that the grey correlation degrees of these units were 0.661(AVDU), 0.732 (#1 FCCU), 0.618 (#2 FCCU), 0.535 (#1 DCU), and 0.572 (#2 DCU), respectively. Thus, the optimal heat source was provided from #1 FCCU. Through further analyses of the fluids from #1 FCCU, the grey correlation degrees of the fluids were 0.597 (oil and gas at top of tower), 0.714 (recycle oil and gas), and 0.512 (diesel), respectively. Thus, the optimal heat source was the oil and gas recycle stream.