In tensor theory, the parallel factorization (PARAFAC)decomposition expresses a tensor as the sum of a set of rank-1tensors. By carrying out this numerical decomposition, mixedsources can be separated or unknown sys...In tensor theory, the parallel factorization (PARAFAC)decomposition expresses a tensor as the sum of a set of rank-1tensors. By carrying out this numerical decomposition, mixedsources can be separated or unknown system parameters can beidentified, which is the so-called blind source separation or blindidentification. In this paper we propose a numerical PARAFACdecomposition algorithm. Compared to traditional algorithms, wespeed up the decomposition in several aspects, i.e., search di-rection by extrapolation, suboptimal step size by Gauss-Newtonapproximation, and linear search by n steps. The algorithm is ap-plied to polarization sensitive array parameter estimation to showits usefulness. Simulations verify the correctness and performanceof the proposed numerical techniques.展开更多
基金supported by the National Natural Science Foundation of China(61571131)the Technology Innovation Fund of the 10th Research Institute of China Electronics Technology Group Corporation(H17038.1)
文摘In tensor theory, the parallel factorization (PARAFAC)decomposition expresses a tensor as the sum of a set of rank-1tensors. By carrying out this numerical decomposition, mixedsources can be separated or unknown system parameters can beidentified, which is the so-called blind source separation or blindidentification. In this paper we propose a numerical PARAFACdecomposition algorithm. Compared to traditional algorithms, wespeed up the decomposition in several aspects, i.e., search di-rection by extrapolation, suboptimal step size by Gauss-Newtonapproximation, and linear search by n steps. The algorithm is ap-plied to polarization sensitive array parameter estimation to showits usefulness. Simulations verify the correctness and performanceof the proposed numerical techniques.