An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of f...An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of flow resistance. A set of algebraic expressions are obtained for free surface elevation inside and outside chamber, and reflection coefficient. The prediction of the reflection coefficients shows that the relative widths of the chamber inducing the minimum reflection coefficient for a slotted-wall caisson breakwater are in a range of 0.10~0.20, which are smaller than that (0.15~0.25) for a perforated-wall caisson breakwater. The reflection coefficients and free surface elevation obtained by the present model are compared with that of laboratory experiments carried out by previous researchers.展开更多
Some researches have been made in this aspect. In the method by Walton Jr.(1992), incident waves are supposed to be the overlapping result of M component waves with different frequencies which may take different direc...Some researches have been made in this aspect. In the method by Walton Jr.(1992), incident waves are supposed to be the overlapping result of M component waves with different frequencies which may take different directions, the direction of incident waves should be available in advance, but in fact the direction of incident waves is not available. In our study, incident waves are supposed to be composed of M overlapping component waves with different frequencies, and different frequencies have different directions. Based on the irregular wave reflection theory, the calculation formulas of wave direction, complex amplitude of incident waves, and complex amplitude of reflected waves in surface which are composed of component waves are derived by means of discrete Fourier transform. Then, the frequency spectra of incident waves and reflected waves and the reflection coefficient of waves with corresponding frequencies are obtained. Verification of the method and the calculation results from in-situ measured data indicate that the method is reliable and highly accurate.展开更多
Seismic wave reflection method is an advanced geophysical detection method in tunnel geological prediction.It is more sensitive and effective in detecting geological anomalies such as fault fracture zone and karst.In ...Seismic wave reflection method is an advanced geophysical detection method in tunnel geological prediction.It is more sensitive and effective in detecting geological anomalies such as fault fracture zone and karst.In order to verify the prediction efficacy and accuracy of the seismic wave reflection method with different instruments and equipment(tunnel geological prediction[TGP]/tunnel seismic prediction[TSP])and different vibration modes(hammering,explosives),a comparison test was carried out in Jinping Tunnel.The test results showed that the time-consumption of the hammering source was short,which can greatly reduce the impact on the construction site;different vibration sources methods of seismic wave reflection can predict the unfavorable geological sections accurately.展开更多
Comparisons of wave reflection, transmission and harmonics due to different types of sub merged structures are investigated by a numerical method, the boundary-fitted coordinate (BFC) method. The types of submerged st...Comparisons of wave reflection, transmission and harmonics due to different types of sub merged structures are investigated by a numerical method, the boundary-fitted coordinate (BFC) method. The types of submerged structures include a submerged horizontal plate, submerged breakwa ters (rectangular and trapezoidal) and a step-type structure (topography). First, the BFC method is ver ified by comparing the computed results with the experimental data, including wave surface elevations, reflected and transmitted wave heights, and amplitudes of higher harmonics, showing that the method is a reasonable one to predict wave deformations due to the submerged structures. Secondly, the wave sur face elevations and the higher harmonics over different submerged structures are compared. Thirdly, re flected and transmitted waves due to different submerged structures are investigated.展开更多
In the nearshore, the wave field contains reflected and incident waves in which there is correlation between their phases due to the effect of reflection by some obstacles. Based on the extended eigenvector method (EE...In the nearshore, the wave field contains reflected and incident waves in which there is correlation between their phases due to the effect of reflection by some obstacles. Based on the extended eigenvector method (EEV) derived by Guan et al., a modified method (MEEV) is proposed as a general and practical approach to estimating directional spectra for the co-existent field of incident and reflected waves and a formula is given for direct calculation of the reflection coefficient. The results of numerical simulations show that MEEV is superior to EEV in resolution power, and the computed reflection coefficient agrees well with the real value within a certain range of incident angle.展开更多
Using a discretized finite difference method, a numerical model was developed to study the interaction of regular waves with a perforated breakwater. Considering a non-viscous, non-rotational fluid, the governing equa...Using a discretized finite difference method, a numerical model was developed to study the interaction of regular waves with a perforated breakwater. Considering a non-viscous, non-rotational fluid, the governing equations of Laplacian velocity potential were developed, and specific conditions for every single boundary were defined. The final developed model was evaluated based on an existing experimental result. The evaluated model was used to simulate the condition for various wave periods from 0.6 to 2 s. The reflection coefficient and transmission coefficient of waves were examined with different breakwater porosities, wave steepnesses, and angular frequencies. The results show that the developed model can suitably present the effect of the structural and hydraulic parameters on the reflection and transmission coefficients. It was also found that with the increase in wave steepness, the reflection coefficient increased logarithmically, while the transmission coefficient decreased logarithmically.展开更多
Reflection and transmission of random waves from submerged ohstacles under various conditions are investigated in this study by means of the boundary element method. The algorithm is based on the Lagrangian descriptio...Reflection and transmission of random waves from submerged ohstacles under various conditions are investigated in this study by means of the boundary element method. The algorithm is based on the Lagrangian description with finite difference adopted for the approximation of time derivative. The accuracy of the model is confirmed by a previous study of the transmission of irregular waves in a water tank without any obstacle, under which sets of submerged breakwaters are located. To reduce the effect of reflection from the wall, a sponge zone is employed at the other end of the flume as an artificial absorbing beach. The power spectrum of Bretschneider-Mitsuyasu type defined by significant wave height, H1/3, and period, T1/3, is employed for the condition of incident waves chosen for the generation of irregular waves. Time histofies of water elevations are measured with numerous pseudo wave gages on the free water surface. With reference to the method for the estimation of irregular incident and reflected waves in random sea presented by Goda and Suzuki (1976), the dissipation efficiency of the breakwaters is investigated. Gauges in different positions are tested for their suitability for the estimation of reflection coefficients for irregular waves. The present results demonstrate the effectiveness of the estimation of reflection coefficient for random waves, and indicate the feasibility of the numerical model.展开更多
The volume of fluid (VOF) method is presented to determine the reflection coefficient of and the total horizontal wave force on perforated caisson breakwaters. The present numerical model is compared with a linear ana...The volume of fluid (VOF) method is presented to determine the reflection coefficient of and the total horizontal wave force on perforated caisson breakwaters. The present numerical model is compared with a linear analytic solution obtained by Sahoo et al. (2000). Also this model is verified with the authors′ laboratory data. It is found that the numerical model is in good agreement with the regression equations obtained from the experimental data. The present numerical method is further discussed to relate porosity, the relative wave absorbing chamber depth, the reflection coefficient of perforated caissons and the total horizontal force on them.展开更多
In this paper, we focus on PHYTOPOROUS, a porous carbon material made entirely from plant-based ingredients, as a new broadband-wave absorber material that acts in the millimeter wave band. We created prototypes of th...In this paper, we focus on PHYTOPOROUS, a porous carbon material made entirely from plant-based ingredients, as a new broadband-wave absorber material that acts in the millimeter wave band. We created prototypes of thin rubber-sheet wave absorbers that contain porous carbon (PHYTOPOROUS) made from rice chaff and soybean hulls, which are both agricultural residue products that are generated in large quantities. We investigated the permittivity and reflectance characteristics of this material using the free-space time-domain method. The thin rubber-sheet wave absorber that contained PHYTOPOROUS made from soybean hulls exhibited a frequency band that was approximately 18 GHz wide and centered at 90 GHz. The return loss for this material was greater than −20 dB. This demonstrates that the material provides nearly constant reflection absorption over a wide frequency band.展开更多
The effect of a high frequency (HF) electric field on the propagation of electrostatic wave in a 2D non-uniform relativistic plasma waveguide is investigated. A variable separation method is applied to the two-fluid...The effect of a high frequency (HF) electric field on the propagation of electrostatic wave in a 2D non-uniform relativistic plasma waveguide is investigated. A variable separation method is applied to the two-fluid plasma model. An analytical study of the reflection of electrostatic wave propagation along a magnetized non-uniform relativistic plasma slab subjected to an intense HF electric field is presented and compared with the case of a non relativistic plasma. It is found that, when the frequency of the incident wave is close to the relativistic electron plasma frequency, the plasma is less reflective due to the presence of both an HF field and the effect of relativistic electrons. On the other hand, for a low-frequency incident wave the reflection coefficient is directly proportional to the amplitude of the HF field. Also, it is shown that the relativistic electron plasma leads to a decrease in the value of reflection coefficient in comparison with the case of the non relativistic plasma.展开更多
The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique combining the advantage of the finite element method (FEM) and the boundary element method (BEM) with its unique properties....The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique combining the advantage of the finite element method (FEM) and the boundary element method (BEM) with its unique properties. In this paper, the SBFEM is used for computing wave passing submerged breakwaters, and the reflection coeffcient and transmission coefficient are given for the case of wave passing by a rectangular submerged breakwater, a rigid submerged barrier breakwater and a trapezium submerged breakwater in a constant water depth. The results are compared with the analytical solution and experimental results. Good agreement is obtained. Through comparison with the results using the dual boundary element method (DBEM), it is found that the SBFEM can obtain higher accuracy with fewer elements. Many submerged breakwaters with different dimensions are computed by the SBFEM, and the changing character of the reflection coeffcient and the transmission coefficient are given in the current study.展开更多
文摘An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of flow resistance. A set of algebraic expressions are obtained for free surface elevation inside and outside chamber, and reflection coefficient. The prediction of the reflection coefficients shows that the relative widths of the chamber inducing the minimum reflection coefficient for a slotted-wall caisson breakwater are in a range of 0.10~0.20, which are smaller than that (0.15~0.25) for a perforated-wall caisson breakwater. The reflection coefficients and free surface elevation obtained by the present model are compared with that of laboratory experiments carried out by previous researchers.
文摘Some researches have been made in this aspect. In the method by Walton Jr.(1992), incident waves are supposed to be the overlapping result of M component waves with different frequencies which may take different directions, the direction of incident waves should be available in advance, but in fact the direction of incident waves is not available. In our study, incident waves are supposed to be composed of M overlapping component waves with different frequencies, and different frequencies have different directions. Based on the irregular wave reflection theory, the calculation formulas of wave direction, complex amplitude of incident waves, and complex amplitude of reflected waves in surface which are composed of component waves are derived by means of discrete Fourier transform. Then, the frequency spectra of incident waves and reflected waves and the reflection coefficient of waves with corresponding frequencies are obtained. Verification of the method and the calculation results from in-situ measured data indicate that the method is reliable and highly accurate.
文摘Seismic wave reflection method is an advanced geophysical detection method in tunnel geological prediction.It is more sensitive and effective in detecting geological anomalies such as fault fracture zone and karst.In order to verify the prediction efficacy and accuracy of the seismic wave reflection method with different instruments and equipment(tunnel geological prediction[TGP]/tunnel seismic prediction[TSP])and different vibration modes(hammering,explosives),a comparison test was carried out in Jinping Tunnel.The test results showed that the time-consumption of the hammering source was short,which can greatly reduce the impact on the construction site;different vibration sources methods of seismic wave reflection can predict the unfavorable geological sections accurately.
文摘Comparisons of wave reflection, transmission and harmonics due to different types of sub merged structures are investigated by a numerical method, the boundary-fitted coordinate (BFC) method. The types of submerged structures include a submerged horizontal plate, submerged breakwa ters (rectangular and trapezoidal) and a step-type structure (topography). First, the BFC method is ver ified by comparing the computed results with the experimental data, including wave surface elevations, reflected and transmitted wave heights, and amplitudes of higher harmonics, showing that the method is a reasonable one to predict wave deformations due to the submerged structures. Secondly, the wave sur face elevations and the higher harmonics over different submerged structures are compared. Thirdly, re flected and transmitted waves due to different submerged structures are investigated.
文摘In the nearshore, the wave field contains reflected and incident waves in which there is correlation between their phases due to the effect of reflection by some obstacles. Based on the extended eigenvector method (EEV) derived by Guan et al., a modified method (MEEV) is proposed as a general and practical approach to estimating directional spectra for the co-existent field of incident and reflected waves and a formula is given for direct calculation of the reflection coefficient. The results of numerical simulations show that MEEV is superior to EEV in resolution power, and the computed reflection coefficient agrees well with the real value within a certain range of incident angle.
文摘Using a discretized finite difference method, a numerical model was developed to study the interaction of regular waves with a perforated breakwater. Considering a non-viscous, non-rotational fluid, the governing equations of Laplacian velocity potential were developed, and specific conditions for every single boundary were defined. The final developed model was evaluated based on an existing experimental result. The evaluated model was used to simulate the condition for various wave periods from 0.6 to 2 s. The reflection coefficient and transmission coefficient of waves were examined with different breakwater porosities, wave steepnesses, and angular frequencies. The results show that the developed model can suitably present the effect of the structural and hydraulic parameters on the reflection and transmission coefficients. It was also found that with the increase in wave steepness, the reflection coefficient increased logarithmically, while the transmission coefficient decreased logarithmically.
文摘Reflection and transmission of random waves from submerged ohstacles under various conditions are investigated in this study by means of the boundary element method. The algorithm is based on the Lagrangian description with finite difference adopted for the approximation of time derivative. The accuracy of the model is confirmed by a previous study of the transmission of irregular waves in a water tank without any obstacle, under which sets of submerged breakwaters are located. To reduce the effect of reflection from the wall, a sponge zone is employed at the other end of the flume as an artificial absorbing beach. The power spectrum of Bretschneider-Mitsuyasu type defined by significant wave height, H1/3, and period, T1/3, is employed for the condition of incident waves chosen for the generation of irregular waves. Time histofies of water elevations are measured with numerous pseudo wave gages on the free water surface. With reference to the method for the estimation of irregular incident and reflected waves in random sea presented by Goda and Suzuki (1976), the dissipation efficiency of the breakwaters is investigated. Gauges in different positions are tested for their suitability for the estimation of reflection coefficients for irregular waves. The present results demonstrate the effectiveness of the estimation of reflection coefficient for random waves, and indicate the feasibility of the numerical model.
文摘The volume of fluid (VOF) method is presented to determine the reflection coefficient of and the total horizontal wave force on perforated caisson breakwaters. The present numerical model is compared with a linear analytic solution obtained by Sahoo et al. (2000). Also this model is verified with the authors′ laboratory data. It is found that the numerical model is in good agreement with the regression equations obtained from the experimental data. The present numerical method is further discussed to relate porosity, the relative wave absorbing chamber depth, the reflection coefficient of perforated caissons and the total horizontal force on them.
文摘In this paper, we focus on PHYTOPOROUS, a porous carbon material made entirely from plant-based ingredients, as a new broadband-wave absorber material that acts in the millimeter wave band. We created prototypes of thin rubber-sheet wave absorbers that contain porous carbon (PHYTOPOROUS) made from rice chaff and soybean hulls, which are both agricultural residue products that are generated in large quantities. We investigated the permittivity and reflectance characteristics of this material using the free-space time-domain method. The thin rubber-sheet wave absorber that contained PHYTOPOROUS made from soybean hulls exhibited a frequency band that was approximately 18 GHz wide and centered at 90 GHz. The return loss for this material was greater than −20 dB. This demonstrates that the material provides nearly constant reflection absorption over a wide frequency band.
文摘The effect of a high frequency (HF) electric field on the propagation of electrostatic wave in a 2D non-uniform relativistic plasma waveguide is investigated. A variable separation method is applied to the two-fluid plasma model. An analytical study of the reflection of electrostatic wave propagation along a magnetized non-uniform relativistic plasma slab subjected to an intense HF electric field is presented and compared with the case of a non relativistic plasma. It is found that, when the frequency of the incident wave is close to the relativistic electron plasma frequency, the plasma is less reflective due to the presence of both an HF field and the effect of relativistic electrons. On the other hand, for a low-frequency incident wave the reflection coefficient is directly proportional to the amplitude of the HF field. Also, it is shown that the relativistic electron plasma leads to a decrease in the value of reflection coefficient in comparison with the case of the non relativistic plasma.
基金This research wasfinanciallysupported bythe National Natural Science Foundation of China(Grant No.50639030)a Programfor Changjiang ScholarsInnovative Research Teamin Dalian University of Technology(Grant No.IRTO420)
文摘The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique combining the advantage of the finite element method (FEM) and the boundary element method (BEM) with its unique properties. In this paper, the SBFEM is used for computing wave passing submerged breakwaters, and the reflection coeffcient and transmission coefficient are given for the case of wave passing by a rectangular submerged breakwater, a rigid submerged barrier breakwater and a trapezium submerged breakwater in a constant water depth. The results are compared with the analytical solution and experimental results. Good agreement is obtained. Through comparison with the results using the dual boundary element method (DBEM), it is found that the SBFEM can obtain higher accuracy with fewer elements. Many submerged breakwaters with different dimensions are computed by the SBFEM, and the changing character of the reflection coeffcient and the transmission coefficient are given in the current study.