In this Letter, we demonstrate a diode-pumped electro-optical cavity-dumped Tm:YAP laser for the first time to our knowledge. A pulse width of 7.1 ns is achieved at a wavelength of 1996.9 nm. A maximum output power o...In this Letter, we demonstrate a diode-pumped electro-optical cavity-dumped Tm:YAP laser for the first time to our knowledge. A pulse width of 7.1 ns is achieved at a wavelength of 1996.9 nm. A maximum output power of 3.02 W is obtained with a pump power of 58.8 W at a repetition rate of 100 k Hz and a high-voltage time of 1000 ns, corresponding to an overall optical-to-optical conversion efficiency of 5.2%. In addition, we study the effect of repetition rate and high-voltage time on the output power characteristics of a cavity-dumped Tm:YAP laser.展开更多
This Letter presents a method of an optical sensor for measuring wavelength shifts. The system consists of a diffraction grating and a total internal reflection heterodyne interferometer. As a heterodyne light beam st...This Letter presents a method of an optical sensor for measuring wavelength shifts. The system consists of a diffraction grating and a total internal reflection heterodyne interferometer. As a heterodyne light beam strikes a grating, the first-order diffraction beam is generated. The light penetrates into a total internal reflection prism at an angle larger than the critical angle. A wavelength variation will affect the diffractive angle of the first-order beam, thus inducing a phase difference variation of the light beam emerging from the total internal reflections inside the trapezoid prism. Both the experimental and theoretical results reveal that, for the first-order diffractive beam, the sensitivity and resolution levels are superior to 5°/nm and 0.006 nm, respectively, in the range of wavelength from 632 to 634 nm, and are superior to 3.1°/nm and 0.0095 nm in the range from 632 to 637 nm. For the theoretical simulation of the fourth-order diffractive beam, they are superior to 6.4 deg ∕nm and 0.0047 nm in the range from 632 to 637 nm.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 61308009 and 61405047)the China Postdoctoral Science Foundation funded project (Nos. 2013M540288 and 2015M570290)+2 种基金the Fundamental Research funds for the Central Universities Grant (Nos. HIT. NSRIF.2014044 and HIT. NSRIF.2015042)the Science Fund for Outstanding Youths of Heilongjiang Province (No. JQ201310)the Heilongjiang Postdoctoral Science Foundation Funded Project (No. LBH-Z14085)
文摘In this Letter, we demonstrate a diode-pumped electro-optical cavity-dumped Tm:YAP laser for the first time to our knowledge. A pulse width of 7.1 ns is achieved at a wavelength of 1996.9 nm. A maximum output power of 3.02 W is obtained with a pump power of 58.8 W at a repetition rate of 100 k Hz and a high-voltage time of 1000 ns, corresponding to an overall optical-to-optical conversion efficiency of 5.2%. In addition, we study the effect of repetition rate and high-voltage time on the output power characteristics of a cavity-dumped Tm:YAP laser.
文摘This Letter presents a method of an optical sensor for measuring wavelength shifts. The system consists of a diffraction grating and a total internal reflection heterodyne interferometer. As a heterodyne light beam strikes a grating, the first-order diffraction beam is generated. The light penetrates into a total internal reflection prism at an angle larger than the critical angle. A wavelength variation will affect the diffractive angle of the first-order beam, thus inducing a phase difference variation of the light beam emerging from the total internal reflections inside the trapezoid prism. Both the experimental and theoretical results reveal that, for the first-order diffractive beam, the sensitivity and resolution levels are superior to 5°/nm and 0.006 nm, respectively, in the range of wavelength from 632 to 634 nm, and are superior to 3.1°/nm and 0.0095 nm in the range from 632 to 637 nm. For the theoretical simulation of the fourth-order diffractive beam, they are superior to 6.4 deg ∕nm and 0.0047 nm in the range from 632 to 637 nm.