期刊文献+
共找到2,255篇文章
< 1 2 113 >
每页显示 20 50 100
A crosstalk-free dual-mode sweat sensing system for naked-eye sweat loss quantification via changes in structural reflectance 被引量:1
1
作者 Bowen Zhong Hao Xu +3 位作者 Xiaokun Qin Lingchen Liu Hailong Wang Lili Wang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期428-438,共11页
Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal m... Sweat loss monitoring is important for understanding the body’s thermoregulation and hydration status,as well as for comprehensive sweat analysis.Despite recent advances,developing a low-cost,scalable,and universal method for the fabrication of colorimetric microfluidics designed for sweat loss monitoring remains challenging.In this study,we propose a novel laserengraved surface roughening strategy for various flexible substrates.This process permits the construction of microchannels that show distinct structural reflectance changes before and after sweat filling.By leveraging these unique optical properties,we have developed a fully laser-engraved microfluidic device for the quantification of naked-eye sweat loss.This sweat loss sensor is capable of a volume resolution of 0.5µL and a total volume capacity of 11µL,and can be customized to meet different performance requirements.Moreover,we report the development of a crosstalk-free dual-mode sweat microfluidic system that integrates an Ag/AgCl chloride sensor and a matching wireless measurement flexible printed circuit board.This integrated system enables the real-time monitoring of colorimetric sweat loss signals and potential ion concentration signals without crosstalk.Finally,we demonstrate the potential practical use of this microfluidic sweat loss sensor and its integrated system for sports medicine via on-body studies. 展开更多
关键词 Sweat loss sensor Microfluidic design Structural reflectance Dual-mode integration Crosstalk-free
下载PDF
Cooperative User-Scheduling and Resource Allocation Optimization for Intelligent Reflecting Surface Enhanced LEO Satellite Communication 被引量:1
2
作者 Meng Meng Bo Hu +1 位作者 Shanzhi Chen Jianyin Zhang 《China Communications》 SCIE CSCD 2024年第2期227-244,共18页
Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO sate... Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput. 展开更多
关键词 convex optimization intelligent reflecting surface LEO satellite communication OFDM
下载PDF
IRS Assisted UAV Communications against Proactive Eavesdropping in Mobile Edge Computing Networks 被引量:1
3
作者 Ying Zhang Weiming Niu Leibing Yan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期885-902,共18页
In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of ... In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes. 展开更多
关键词 Mobile edge computing(MEC) unmanned aerial vehicle(UAV) intelligent reflecting surface(IRS) zero forcing(ZF)
下载PDF
Correction of microwave pulse reflection by digital filters in superconducting quantum circuits
4
作者 Liang-Liang Guo Peng Duan +9 位作者 Lei Du Hai-Feng Zhang Hao-Ran Tao Yong Chen Xiao-Yan Yang Chi Zhang Zhi-Long Jia Wei-Cheng Kong Zhao-Yun Chen Guo-Ping Guo 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期117-123,共7页
Reducing the control error is vital for high-fidelity digital and analog quantum operations.In superconducting circuits,one disagreeable error arises from the reflection of microwave signals due to impedance mismatch ... Reducing the control error is vital for high-fidelity digital and analog quantum operations.In superconducting circuits,one disagreeable error arises from the reflection of microwave signals due to impedance mismatch in the control chain.Here,we demonstrate a reflection cancelation method when considering that there are two reflection nodes on the control line.We propose to generate the pre-distortion pulse by passing the envelopes of the microwave signal through digital filters,which enables real-time reflection correction when integrated into the field-programmable gate array(FPGA).We achieve a reduction of single-qubit gate infidelity from 0.67%to 0.11%after eliminating microwave reflection.Real-time correction of microwave reflection paves the way for precise control and manipulation of the qubit state and would ultimately enhance the performance of algorithms and simulations executed on quantum processors. 展开更多
关键词 REFLECTION cancelation digital filter single-qubit GATE SUPERCONDUCTING circuit
下载PDF
Development and prospect of acoustic reflection imaging logging processing and interpretation method
5
作者 LI Ning LIU Peng +5 位作者 WU Hongliang LI Yusheng ZHANG Wenhao WANG Kewen FENG Zhou WANG Hao 《Petroleum Exploration and Development》 SCIE 2024年第4期839-851,共13页
Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding th... Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology. 展开更多
关键词 acoustic reflection imaging monopole P-waves dipole S-waves horizontal well acoustic reflection imaging 3D imaging well logging-seismic integration CIFLog software
下载PDF
Analytical solution to incident angle quasi-phase-matching engineering for second harmonic generation in a periodic-poled lithium niobate crystal
6
作者 洪丽红 邱雅婷 +2 位作者 李晓霓 陈宝琴 李志远 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期115-123,共9页
Phase matching or quasi-phase matching(QPM)is of significant importance to the conversion efficiency of second harmonic generation(SHG)in artificial nonlinear crystals like lithium niobate(LN)crystal or microstructure... Phase matching or quasi-phase matching(QPM)is of significant importance to the conversion efficiency of second harmonic generation(SHG)in artificial nonlinear crystals like lithium niobate(LN)crystal or microstructured nonlinear crystals like periodic-poled lithium niobate(PPLN)crystals.In this paper,we propose and show that the incident angle of pump laser light can be harnessed as an alternative versatile tool to engineer QPM for high-efficiency SHG in a PPLN crystal,in addition to conventional means of period adjusting or temperature tuning.A rigorous model is established and analytical solution of the nonlinear conversion efficiency under the small and large signal approximation theory is obtained at different incident angles.The variation of phase mismatching and walk-off length with incident angle or incident wavelength are also explored.Numerical simulations for a PPLN crystal with first order QPM structure are used to confirm our theoretical predictions based on the exact analytical solution of the general large-signal theory.The results show that the narrow-band tunable SHG output covers a range of 532 nm–552.8 nm at the ideal incident angle from 0°to 90°.This theoretical scheme,fully considering the reflection and transmission at the air-crystal interface,would offer an efficient theoretical system to evaluate the nonlinear frequency conversion and help to obtain the maximum SHG conversion efficiency by selecting an optimum incident wavelength and incident angle in a specially designed PPLN crystal,which would be very helpful for the design of tunable narrow-band pulse nanosecond,picosecond,and femtosecond laser devices via PPLN and other microstructured LN crystals. 展开更多
关键词 nonlinear frequency conversion transmission REFLECTION lithium niobate
下载PDF
Investigation of reflection anisotropy induced by micropipe defects on the surface of a 4H-SiC single crystal using scanning anisotropy microscopy
7
作者 黄威 俞金玲 +7 位作者 刘雨 彭燕 王利军 梁平 陈堂胜 徐现刚 刘峰奇 陈涌海 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期630-637,共8页
Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a&#... Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a'butterfly pattern'is obtained around the micropipes by SAM.The RA image of the edge dislocations is theoretically simulated based on dislocation theory and the photoelastic principle.By comparing with the Raman spectrum,it is verified that the micropipes consist of edge dislocations.The different patterns of the RA images are due to the different orientations of the Burgers vectors.Besides,the strain distribution of the micropipes is also deduced.One can identify the dislocation type,the direction of the Burgers vector and the optical anisotropy from the RA image by using SAM.Therefore,SAM is an ideal tool to measure the optical anisotropy induced by the strain field around a defect. 展开更多
关键词 scanning anisotropy microscopy SiC reflection anisotropy edge dislocation
下载PDF
Thin paints for durable and scalable radiative cooling
8
作者 Shanquan Liu Fei Zhang +3 位作者 Xingyu Chen Hongjie Yan Wei Chen Meijie Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期176-182,I0006,共8页
Passive daytime radiative cooling(PDRC) is environment-friendly without energy input by enhancing the coating's solar reflectance(R_(solar)) and thermal emittance(ε_(LWIR)) in the atmosphere's long-wave infra... Passive daytime radiative cooling(PDRC) is environment-friendly without energy input by enhancing the coating's solar reflectance(R_(solar)) and thermal emittance(ε_(LWIR)) in the atmosphere's long-wave infrared transmission window.However,high R_(solar) is usually achieved by increasing the coating's thickness,which not only increases materials' cost but also impairs heat transfer.Additionally,the desired high R_(solar) is vulnerable to dust pollution in the outdoors.In this work,a thin paint was designed by mixing hBN plates,PFOTS,and IPA. R_(solar)=0.963 and ε_(LWIR)=0.927 was achieved at a thickness of 150 μm due to the high backscattering ability of scatters.A high through-plane thermal conductivity(~1.82 W m^(-1) K^(-1)) also can be obtained.In addition,the porous structure coupled with the binder PFOTS resulted in a contact angle of 154°,demonstrating excellent durability under dust contamination.Outdoor experiments showed that the thin paint can obtain a 2.3℃ lower temperature for sub-ambient cooling than the reference PDRC coating in the daytime.Furtherly,the above-ambient heat dissipation performance can be enhanced by spraying the thin paint on a 3D heat sink,which was 15.7℃ lower than the reference 1D structure,demonstrating excellent performance for durable and scalable PDRC applications. 展开更多
关键词 Radiative cooling Heat dissipation Solar reflectance Thermal emittance Contact angle
下载PDF
Distributed IRS-Aided DF Relaying Systems:Performance Analysis and Optimization
9
作者 Sun Qiang Qian Panpan +3 位作者 Chen Xiaomin Ju Jinjuan Wang Jue Zhang Jiayi 《China Communications》 SCIE CSCD 2024年第6期129-145,共17页
Intelligent reflecting surface(IRS)is a newly emerged and promising paradigm to substantially improve the performance of wireless communications by constructing favorable communication channels via properly tuning mas... Intelligent reflecting surface(IRS)is a newly emerged and promising paradigm to substantially improve the performance of wireless communications by constructing favorable communication channels via properly tuning massive reflecting elements.This paper considers a distributed IRS aided decode-and-forward(DF)relaying system over Nakagami-m fading channels.Based on a tight approximation for the distribution of the received signalto-noise ratio(SNR),we first derive exact closed-form expressions of the outage probability,ergodic capacity,and energy efficiency for the considered system.Moreover,we propose the optimal IRS configuration considering the energy efficiency and pilot overhead.Finally,we compare the performance between the distributed IRS-aided DF relaying and multi-IRS-only systems,and verify the analytical results by using monte carlo simulations. 展开更多
关键词 CONFIGURATION energy efficiency ergodic capacity intelligent reflecting surface IRS outage probability
下载PDF
Application of Gaussian Beam Summation Migration in Reflected In-seam Wave Imaging
10
作者 HAN Jianguang LÜQingtian +2 位作者 ZHANG Zhiheng YANG Shun WANG Shuo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第1期276-284,共9页
The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is ... The geological conditions for coal mining in China are complex,with various structural issues such as faults and collapsed columns seriously compromising the safety of coal mine production.In-seam wave exploration is an effective technique for acquiring detailed information on geological structures in coal seam working faces.However,the existing reflected in-seam wave imaging technique can no longer meet the exploration precision requirements,making it imperative to develop a new reflected in-seam wave imaging technique.This study applies the Gaussian beam summation(GBS)migration method to imaging coal seams'reflected in-seam wave data.Firstly,with regard to the characteristics of the reflected in-seam wave data,methods such as wavefield removal and enveloped superposition are employed for the corresponding wavefield separation,wave train compression and other processing of reflected in-seam waves.Thereafter,imaging is performed using the GBS migration technique.The feasibility and effectiveness of the proposed method for reflected in-seam wave imaging are validated by conducting GBS migration tests on 3D coal-seam fault models with different dip angles and throws.By applying the method to reflected in-seam wave data for an actual coal seam working face,accurate imaging of a fault structure is obtained,thereby validating its practicality. 展开更多
关键词 reflected in-seam wave Gaussian beam summation migration numerical tests fault
下载PDF
不均匀海底地形影响下柔性板与斜向来浪的相互作用
11
作者 Saista Tabssum Balaji Ramakrishnan 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第2期261-275,共15页
The present work analyzes the interaction of oblique waves by a porous flexible breakwater in the presence of a step-type bottom.The physical models for both scattering and trapping cases are considered and developed ... The present work analyzes the interaction of oblique waves by a porous flexible breakwater in the presence of a step-type bottom.The physical models for both scattering and trapping cases are considered and developed within the framework of small amplitude water-wave theory.Darcy’s law is used to model the wave interaction with the porous medium.It is assumed that the varying bottom extends over a finite interval,connected by a finite length of uniform bottom near an impermeable wall,and a semi-infinite length of bottom in the open water region.The boundary value problem is solved using the eigenfunction expansion method in the uniform bottom regions,while a modified mild-slope equation(MMSE)is used for the region with the varying bottom.Additionally,a mass-conserving jump condition is employed to handle the solution at slope discontinuities in the bottom.A system of equations is derived by matching the solutions at interfaces.The reflection coefficient and force on the breakwater and impermeable wall are plotted and analyzed for various parameters,such as the length of the varying bottom,depth ratio,angle of incidence,and flexural rigidity.It is observed that moderate values of flexural rigidity and depth ratio significantly contribute to an optimum reflection coefficient and reduce the wave force on the wall and breakwater.Remarkably,the outcomes of this study are assumed to be applicable in the construction of this type of breakwater in coastal regions. 展开更多
关键词 Porous flexible breakwater Varying bottom Mild-slope equation Reflection coefficient Wave force
下载PDF
The multi-peak point phenomenon of broadband microwave reflection caused by inhomogeneous plasma
12
作者 杨敏 齐凯旋 +5 位作者 杨玖文 贾飒 刘浩岩 陈燕扬 李瑾 李小平 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期1-11,共11页
During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks i... During spacecraft re-entry,the challenge of measuring plasma sheath parameters directly contributes to difficulties in addressing communication blackout.In this work,we have discovered a phenomenon of multiple peaks in reflection data caused by the inhomogeneous plasma.Simulation results show that the multi-peak points fade away as the characteristic frequency is approached,resembling a series of gradually decreasing peaks.The positions and quantities of these points are positively correlated with electron density,yet they show no relation to collision frequency.This phenomenon is of significant reference value for future studies on the spatial distribution of plasmas,particularly for using microwave reflection signals in diagnosing the plasma sheath. 展开更多
关键词 plasma sheath microwave reflection inhomogeneous plasma
下载PDF
Two-Stream Approximation to the Radiative Transfer Equation:A New Improvement and Comparative Accuracy with Existing Methods
13
作者 F.Momo TEMGOUA L.Akana NGUIMDO DNJOMO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期278-292,共15页
Mathematical modeling of the interaction between solar radiation and the Earth's atmosphere is formalized by the radiative transfer equation(RTE), whose resolution calls for two-stream approximations among other m... Mathematical modeling of the interaction between solar radiation and the Earth's atmosphere is formalized by the radiative transfer equation(RTE), whose resolution calls for two-stream approximations among other methods. This paper proposes a new two-stream approximation of the RTE with the development of the phase function and the intensity into a third-order series of Legendre polynomials. This new approach, which adds one more term in the expression of the intensity and the phase function, allows in the conditions of a plane parallel atmosphere a new mathematical formulation of γparameters. It is then compared to the Eddington, Hemispheric Constant, Quadrature, Combined Delta Function and Modified Eddington, and second-order approximation methods with reference to the Discrete Ordinate(Disort) method(δ –128 streams), considered as the most precise. This work also determines the conversion function of the proposed New Method using the fundamental definition of two-stream approximation(F-TSA) developed in a previous work. Notably,New Method has generally better precision compared to the second-order approximation and Hemispheric Constant methods. Compared to the Quadrature and Eddington methods, New Method shows very good precision for wide domains of the zenith angle μ 0, but tends to deviate from the Disort method with the zenith angle, especially for high values of optical thickness. In spite of this divergence in reflectance for high values of optical thickness, very strong correlation with the Disort method(R ≈ 1) was obtained for most cases of optical thickness in this study. An analysis of the Legendre polynomial series for simple functions shows that the high precision is due to the fact that the approximated functions ameliorate the accuracy when the order of approximation increases, although it has been proven that there is a limit order depending on the function from which the precision is lost. This observation indicates that increasing the order of approximation of the phase function of the RTE leads to a better precision in flux calculations. However, this approach may be limited to a certain order that has not been studied in this paper. 展开更多
关键词 Radiative Transfer Equation two-stream method Legendre polynomial optical thickness moments of specific intensity conversion function TRANSMITTANCE reflectance
下载PDF
Scattering of Water Waves by Dual Symmetric Inclined Floating Porous Barriers Using the DBEM
14
作者 WANG Li-xian DENG Yan-wen +1 位作者 YE Yang-sha DENG Zheng-zhi 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期156-168,共13页
The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering th... The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering that thin barriers are zero-thickness,a novel numerical method involving the the coupling of the dual boundary element method(DBEM)with damping layers is applied.In order to effectively damp out the reflected waves,two damping layers,instead of pseudoboundaries are implemented near the two side boundaries of the computational domain.Thus,the modified linearized free surface boundary conditions are formulated and used for solving both the ordinary boundary integral equation as well as the hypersingular boundary integral equation for degenerate boundaries.The newly developed numerical method is validated against analytical methods using the matched eigenfunction expansion method for the special case of two vertical barriers or the inclined angle to the vertical being zero.The influence of the length of the two damping layers has been discussed.Moreover,these findings are also validated against previous results for several cases.After validation,the numerical results for the reflection coefficient,transmission coefficient and dissipation coefficient are obtained by varying the inclination angle and porosity-effect parameter.The effects of both the inclination angle and the porosity on the amplitudes of wave forces acting on both the front and rear barriers are also investigated.It is found that the effect of the inclination angle mainly shifts the location of the extremal values of the reflection and the transmission coefficients.Additionally,a moderate value of the porosity-parameter is quite effective at dissipating wave energy and mitigating the wave loads on dual barriers. 展开更多
关键词 dual boundary element method inclined perforated floating breakwater reflection coefficient transmission coefficient damping layer
下载PDF
Intelligent reflecting surface for sum rate enhancement in MIMO systems
15
作者 Chan-Yeob Park Ji-Sung Jung +2 位作者 Yeong-Rong Lee Beom-Sik Shin Hyoung-Kyu Song 《Digital Communications and Networks》 SCIE CSCD 2024年第1期94-100,共7页
The research for the Intelligent Reflecting Surface(IRS)which has the advantages of cost and energy efficiency has been studied.Channel capacity can be effectively increased by appropriately setting the phase value of... The research for the Intelligent Reflecting Surface(IRS)which has the advantages of cost and energy efficiency has been studied.Channel capacity can be effectively increased by appropriately setting the phase value of IRS elements according to the channel conditions.However,the problem of obtaining an appropriate phase value of IRs is difficult to solve due to the non-convex problem.This paper proposes an iterative algorithm for the alternating optimal solution in the Single User Multiple-Input-Multiple-Output(SU-MIMO)systems.The proposed iterative algorithm finds an alternating optimal solution that is the phase value of IRS one by one.The results show that the proposed method has better performance than that of the randomized IRS systems.The number of iterations for maximizing the performance of the proposed algorithm depends on the channel state between the IRS and the receiver. 展开更多
关键词 Intelligent reflecting surface MIMO Sum rate
下载PDF
NADARAYA-WATSON ESTIMATORS FOR REFLECTED STOCHASTIC PROCESSES
16
作者 韩月才 张丁文 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期143-160,共18页
We study the Nadaraya-Watson estimators for the drift function of two-sided reflected stochastic differential equations.The estimates,based on either the continuously observed process or the discretely observed proces... We study the Nadaraya-Watson estimators for the drift function of two-sided reflected stochastic differential equations.The estimates,based on either the continuously observed process or the discretely observed process,are considered.Under certain conditions,we prove the strong consistency and the asymptotic normality of the two estimators.Our method is also suitable for one-sided reflected stochastic differential equations.Simulation results demonstrate that the performance of our estimator is superior to that of the estimator proposed by Cholaquidis et al.(Stat Sin,2021,31:29-51).Several real data sets of the currency exchange rate are used to illustrate our proposed methodology. 展开更多
关键词 reflected stochastic differential equation discretely observed process continuously observed process Nadaraya-Watson estimator asymptotic behavior
下载PDF
Impact of surface-reflected seismic waves on the seismic isolation performance of circular tunnel isolation layers
17
作者 LU Jiahui LUO Junjie +3 位作者 HUANG Xiangyun HONG Junliang HE YanXin ZHOU Fulin 《Journal of Mountain Science》 SCIE CSCD 2024年第3期901-917,共17页
Seismic isolation is an effective strategy to mitigate the risk of seismic damage in tunnels.However,the impact of surface-reflected seismic waves on the effectiveness of tunnel isolation layers remains under explored... Seismic isolation is an effective strategy to mitigate the risk of seismic damage in tunnels.However,the impact of surface-reflected seismic waves on the effectiveness of tunnel isolation layers remains under explored.In this study,we employ the wave function expansion method to provide analytical solutions for the dynamic responses of linings in an elastic half-space and an infinite elastic space.By comparing the results of the two models,we investigate the seismic isolation effect of tunnel isolation layers induced by reflected seismic waves.Our findings reveal significant differences in the dynamic responses of the lining in the elastic half-space and the infinitely elastic space.Specifically,the dynamic stress concentration factor(DSCF)of the lining in the elastic half-space exhibits periodic fluctuations,influenced by the incident wave frequency and tunnel depth,while the DSCF in the infinitely elastic space remain stable.Overall,the seismic isolation application of the tunnel isolation layer is found to be less affected by surface-reflected seismic waves.Our results provide valuable insights for the design and assessment of the seismic isolation effect of tunnel isolation layers. 展开更多
关键词 Circular tunnel seismic isolation Surface reflection Response of liners Wave-function expansion method
下载PDF
Wave Reflection by Rectangular Breakwaters for Coastal Protection
18
作者 Hasna Akarni Hamza Mabchour +1 位作者 Laila El Aarabi Soumia Mordane 《Fluid Dynamics & Materials Processing》 EI 2024年第3期579-593,共15页
In this study,we focus on the numerical modelling of the interaction between waves and submerged structures in the presence of a uniform flow current.Both the same and opposite senses of wave propagation are considere... In this study,we focus on the numerical modelling of the interaction between waves and submerged structures in the presence of a uniform flow current.Both the same and opposite senses of wave propagation are considered.The main objective is an understanding of the effect of the current and various geometrical parameters on the reflection coefficient.The wave used in the study is based on potential theory,and the submerged structures consist of two rectangular breakwaters positioned at a fixed distance from each other and attached to the bottom of a wave flume.The numerical modeling approach employed in this work relies on the Boundary Element Method(BEM).The results are compared with experimental data to validate the approach.The findings of the study demonstrate that the double rectangular breakwater configuration exhibits superior wave attenuation abilities if compared to a single rectangular breakwater,particularly at low wavenumbers.Furthermore,the study reveals that wave mitigation is more pronounced when the current and wave propagation are coplanar,whereas it is less effective in the case of opposing current. 展开更多
关键词 WAVE CURRENT BREAKWATERS Boundary Element Method(BEM) reflection coefficient
下载PDF
New insights in nano-copper chromite catalyzing ultrafine AP:Evaluation of dispersity and mixing uniformity
19
作者 Yong Kou Peng Luo +8 位作者 Lei Xiao Yanping Xin Guangpu Zhang Yubing Hu Junqing Yang Hongxu Gao Fengqi Zhao Wei Jiang Gazi Hao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期120-133,共14页
Improving the application of nanomaterials has always been a research hotspot in the field of energetic materials(EMs)due to their obvious catalytic effect on the EMs,especially the uniformly dispersed nanomaterials.H... Improving the application of nanomaterials has always been a research hotspot in the field of energetic materials(EMs)due to their obvious catalytic effect on the EMs,especially the uniformly dispersed nanomaterials.However,few studies have reported the dispersion of nanomaterials.In this study,the dispersity and mixing uniformity of nano-CuCr_(2)O_(4)was evaluated based on the difference of solid UV light absorption between the nano-catalytic materials and EMs.The nano-CuCr_(2)O_(4)/ultrafine AP composites with different dispersity of nano-CuCr_(2)O_(4)were prepared by manual grinding and mechanical grinding with different grinding strength and griding time.And then,the absorbance of different samples at 212 nm was obtained by solid UV testing due to the high repeatability of the absorbance at 210-214 nm for three parallel experiments,and the dispersity of different samples was calculated through the established difference equation.Furthermore,the samples were characterized by XRD,IR,SEM,EDS,DSC and TG-MS,which confirmed that different mixing methods did not change the structure of the samples(XRD and IR),and the mixing uniformity improved with the increase of grinding strength and grinding time(SEM and EDS).The scientificity and feasibility of the difference equation were further verified by DSC.The dispersity of nano-CuCr_(2)O_(4)exhibits a positive intrinsic relationship with its catalytic performance,and the uniformly dispersed nano-CuCr_(2)O_(4)significantly reduces the thermal decomposition temperature of ultrafine AP from 367.7 to 338.8℃.The TG-MS patterns show that the dispersed nano-CuCr_(2)O_(4)advanced the thermal decomposition process of ultrafine AP by about 700 s,especially in the high temperature decomposition stage,and the more concentrated energy release characteristic is beneficial to further enhance the energy performance of AP-based propellants.The above conclusions show that the evaluation method of dispersity based on solid UV curves could provide new ideas for the dispersity characterization of nano-catalytic materials in EMs,which is expected to be widely used in the field of EMs. 展开更多
关键词 Nano-CuCr_(2)O_(4) Ultrafine AP Dispersity UVeVis diffuse reflectance spectroscopy Thermal decomposition
下载PDF
Resource Allocation for IRS Assistedmm Wave Wireless Powered Sensor Networks with User Cooperation
20
作者 Yonghui Lin Zhengyu Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期663-677,共15页
In this paper,we investigate IRS-aided user cooperation(UC)scheme in millimeter wave(mmWave)wirelesspowered sensor networks(WPSN),where two single-antenna users are wireless powered in the wireless energy transfer(WET... In this paper,we investigate IRS-aided user cooperation(UC)scheme in millimeter wave(mmWave)wirelesspowered sensor networks(WPSN),where two single-antenna users are wireless powered in the wireless energy transfer(WET)phase first and then cooperatively transmit information to a hybrid access point(AP)in the wireless information transmission(WIT)phase,following which the IRS is deployed to enhance the system performance of theWET andWIT.We maximized the weighted sum-rate problem by jointly optimizing the transmit time slots,power allocations,and the phase shifts of the IRS.Due to the non-convexity of the original problem,a semidefinite programming relaxation-based approach is proposed to convert the formulated problem to a convex optimization framework,which can obtain the optimal global solution.Simulation results demonstrate that the weighted sum throughput of the proposed UC scheme outperforms the non-UC scheme whether equipped with IRS or not. 展开更多
关键词 Intelligent reflecting surface millimeter wave wireless powered sensor networks user cooperation resource allocation
下载PDF
上一页 1 2 113 下一页 到第
使用帮助 返回顶部