Let P∈C^(m×m)and Q∈C^(n×n)be Hermitian and{k+1}-potent matrices,i.e.,P k+1=P=P∗,Qk+1=Q=Q∗,where(·)∗stands for the conjugate transpose of a matrix.A matrix X∈C m×n is called{P,Q,k+1}-reflexive(an...Let P∈C^(m×m)and Q∈C^(n×n)be Hermitian and{k+1}-potent matrices,i.e.,P k+1=P=P∗,Qk+1=Q=Q∗,where(·)∗stands for the conjugate transpose of a matrix.A matrix X∈C m×n is called{P,Q,k+1}-reflexive(anti-reflexive)if P XQ=X(P XQ=−X).In this paper,the least squares solution of the matrix equation AXB=C subject to{P,Q,k+1}-reflexive and anti-reflexive constraints are studied by converting into two simpler cases:k=1 and k=2.展开更多
In this article, the generalized reflexive solution of matrix equations (AX = B, XC = D) is considered. With special properties of generalized reflexive matrices, the necessary and sufficient conditions for the solv...In this article, the generalized reflexive solution of matrix equations (AX = B, XC = D) is considered. With special properties of generalized reflexive matrices, the necessary and sufficient conditions for the solvability and the general expression of the solution are obtained. Moreover, the related optimal approximation problem to a given matrix over the solution set is solved.展开更多
We derive necessary and sufficient conditions for the existence and an expression of the (anti)reflexive solution with respect to the nontrivial generalized reflection matrix P to the system of complex matrix equati...We derive necessary and sufficient conditions for the existence and an expression of the (anti)reflexive solution with respect to the nontrivial generalized reflection matrix P to the system of complex matrix equations AX = B and XC = D. The explicit solutions of the approximation problem min x∈Ф ||X - E||F was given, where E is a given complex matrix and Ф is the set of all reflexive (or antireflexive) solutions of the system mentioned above, and ||·|| is the Frobenius norm. Furthermore, it was pointed that some results in a recent paper are special cases of this paper.展开更多
Let P∈C^(n×n)be a Hermitian and{k+1}-potent matrix,i.e.,P^(k+1)=P=P^(*),where(·)^(*)stands for the conjugate transpose of a matrix.A matrix X∈C^(n×n)is called{P,k+1}-reflexive(anti-reflexive)if PXP=X(...Let P∈C^(n×n)be a Hermitian and{k+1}-potent matrix,i.e.,P^(k+1)=P=P^(*),where(·)^(*)stands for the conjugate transpose of a matrix.A matrix X∈C^(n×n)is called{P,k+1}-reflexive(anti-reflexive)if PXP=X(P XP=-X).The system of matrix equations AX=C,XB=D subject to{P,k+1}-reflexive and anti-reflexive constraints are studied by converting into two simpler cases:k=1 and k=2,the least squares solution and the associated optimal approximation problem are also considered.展开更多
In this paper,we investigate the{P,Q,k+1}-reflexive and anti-reflexive solutions to the system of matrix equations AX=C,XB=D and AXB=E.We present the necessary and sufficient conditions for the system men-tioned above...In this paper,we investigate the{P,Q,k+1}-reflexive and anti-reflexive solutions to the system of matrix equations AX=C,XB=D and AXB=E.We present the necessary and sufficient conditions for the system men-tioned above to have the{P,Q,k+1}-reflexive and anti-reflexive solutions.We also obtain the expressions of such solutions to the system by the singular value decomposition.Moreover,we consider the least squares{P,Q,k+1}-reflexive and anti-reflexive solutions to the system.Finally,we give an algorithm to illustrate the results of this paper.展开更多
The matrix equations (AX, XBH)=(C, DH) have been widely used in structural design, parameter identification, linear optimal control, and so on. But few researches studied the reflexive solutions. A new approach for th...The matrix equations (AX, XBH)=(C, DH) have been widely used in structural design, parameter identification, linear optimal control, and so on. But few researches studied the reflexive solutions. A new approach for the reflexive solutions to the matrix equations was proposed. By applying the canonical correlation decomposition (CCD) of matrix pairs, the necessary and sufficient conditions for the existence and the general expression for the reflexive solutions of the matrix equations (AX, XBH)=(C, DH) were established. In addition, by using the methods of space decomposition, the expression of the optimal approximation solution to a given matrix was derived.展开更多
Let S∈Rn×n be a symmetric and nontrival involution matrix. We say that A∈E R n×n is a symmetric reflexive matrix if AT = A and SAS = A. Let S R r n×n(S)={A|A= AT,A = SAS, A∈Rn×n}. This paper dis...Let S∈Rn×n be a symmetric and nontrival involution matrix. We say that A∈E R n×n is a symmetric reflexive matrix if AT = A and SAS = A. Let S R r n×n(S)={A|A= AT,A = SAS, A∈Rn×n}. This paper discusses the following two problems. The first one is as follows. Given Z∈Rn×m (m < n),∧= diag(λ1,...,λm)∈Rm×m, andα,β∈R withα<β. Find a subset (?)(Z,∧,α,β) of SRrn×n(S) such that AZ = Z∧holds for any A∈(?)(Z,∧,α,β) and the remaining eigenvaluesλm+1 ,...,λn of A are located in the interval [α,β], Moreover, for a given B∈Rn×n, the second problem is to find AB∈(?)(Z,∧,α,β) such that where ||.|| is the Frobenius norm. Using the properties of symmetric reflexive matrices, the two problems are essentially decomposed into the same kind of subproblems for two real symmetric matrices with smaller dimensions, and then the expressions of the general solution for the two problems are derived.展开更多
In this paper, we first consider the least-squares solution of the matrix inverse problem as follows: Find a hermitian anti-reflexive matrix corresponding to a given generalized reflection matrix J such that for give...In this paper, we first consider the least-squares solution of the matrix inverse problem as follows: Find a hermitian anti-reflexive matrix corresponding to a given generalized reflection matrix J such that for given matrices X, B we have minA ||AX - B||. The existence theorems are obtained, and a general representation of such a matrix is presented. We denote the set of such matrices by SE. Then the matrix nearness problem for the matrix inverse problem is discussed. That is: Given an arbitrary A^*, find a matrix A E SE which is nearest to A^* in Frobenius norm. We show that the nearest matrix is unique and provide an expression for this nearest matrix.展开更多
Necessary and sufficient conditions are given for the existence of the general solution, the centrosymmetric solution, and the centroskewsymmetric solution to a system of linear matrix equations over an arbitrary skew...Necessary and sufficient conditions are given for the existence of the general solution, the centrosymmetric solution, and the centroskewsymmetric solution to a system of linear matrix equations over an arbitrary skew field. The representations of such the solutions of the system are also derived.展开更多
In this paper, a system of complex matrix equations was studied. Necessary and sufficient conditions for the existence and the expression of generalized bipositive semidefinite solution to the system were given. In ad...In this paper, a system of complex matrix equations was studied. Necessary and sufficient conditions for the existence and the expression of generalized bipositive semidefinite solution to the system were given. In addition, a criterion for a matrix to be generalized bipositive semidefinite was determined.展开更多
Let be a given Hermitian matrix satisfying . Using the eigenvalue decomposition of , we consider the least squares solutions to the matrix equation , with the constraint .
In this paper,the Hermitian reflexive(Anti-Hermitian reflexive)least-squares so-lutions of matrix equations(AX = B,XC = D)are considered.With special properties of partitioned matrices and Hermitian reflexive(Ant...In this paper,the Hermitian reflexive(Anti-Hermitian reflexive)least-squares so-lutions of matrix equations(AX = B,XC = D)are considered.With special properties of partitioned matrices and Hermitian reflexive(Anti-Hermitian reflexive)matrices,the general expression of the solution is obtained.Moreover,the related optimal approximation problem to a given matrix over the solution set is considered.展开更多
The concept of reflexive property is introduced by Mason. This note concerns a ring-theoretic property of matrix rings over reflexive rings. We introduce the concept of weakly reflexive rings as a generalization of re...The concept of reflexive property is introduced by Mason. This note concerns a ring-theoretic property of matrix rings over reflexive rings. We introduce the concept of weakly reflexive rings as a generalization of reflexive rings. From any ring, we can construct weakly reflexive rings but not reflexive, using its lower nilradical. We study various useful properties of such rings in relation with ideals in matrix rings, showing that this new property is Morita invariant. We also investigate the weakly reflexive property of several sorts of ring extensions which have roles in ring theory.展开更多
基金Supported by the Education Department Foundation of Hebei Province(Grant No.QN2015218).
文摘Let P∈C^(m×m)and Q∈C^(n×n)be Hermitian and{k+1}-potent matrices,i.e.,P k+1=P=P∗,Qk+1=Q=Q∗,where(·)∗stands for the conjugate transpose of a matrix.A matrix X∈C m×n is called{P,Q,k+1}-reflexive(anti-reflexive)if P XQ=X(P XQ=−X).In this paper,the least squares solution of the matrix equation AXB=C subject to{P,Q,k+1}-reflexive and anti-reflexive constraints are studied by converting into two simpler cases:k=1 and k=2.
基金supported by National Natural Science Foundation of China (10571047)and by Scientific Research Fund of Hunan Provincial Education Department of China Grant(06C235)+1 种基金by Central South University of Forestry and Technology (06Y017)by Specialized Research Fund for the Doctoral Program of Higher Education (20060532014)
文摘In this article, the generalized reflexive solution of matrix equations (AX = B, XC = D) is considered. With special properties of generalized reflexive matrices, the necessary and sufficient conditions for the solvability and the general expression of the solution are obtained. Moreover, the related optimal approximation problem to a given matrix over the solution set is solved.
基金supported by the National Natural Science Foundation of China (Grant No.60672160)
文摘We derive necessary and sufficient conditions for the existence and an expression of the (anti)reflexive solution with respect to the nontrivial generalized reflection matrix P to the system of complex matrix equations AX = B and XC = D. The explicit solutions of the approximation problem min x∈Ф ||X - E||F was given, where E is a given complex matrix and Ф is the set of all reflexive (or antireflexive) solutions of the system mentioned above, and ||·|| is the Frobenius norm. Furthermore, it was pointed that some results in a recent paper are special cases of this paper.
基金Supported by the Education Department Foundation of Hebei Province(QN2015218)Supported by the Natural Science Foundation of Hebei Province(A2015403050)
文摘Let P∈C^(n×n)be a Hermitian and{k+1}-potent matrix,i.e.,P^(k+1)=P=P^(*),where(·)^(*)stands for the conjugate transpose of a matrix.A matrix X∈C^(n×n)is called{P,k+1}-reflexive(anti-reflexive)if PXP=X(P XP=-X).The system of matrix equations AX=C,XB=D subject to{P,k+1}-reflexive and anti-reflexive constraints are studied by converting into two simpler cases:k=1 and k=2,the least squares solution and the associated optimal approximation problem are also considered.
基金supported by the National Natural Science Foundation of China(11571220)
文摘In this paper,we investigate the{P,Q,k+1}-reflexive and anti-reflexive solutions to the system of matrix equations AX=C,XB=D and AXB=E.We present the necessary and sufficient conditions for the system men-tioned above to have the{P,Q,k+1}-reflexive and anti-reflexive solutions.We also obtain the expressions of such solutions to the system by the singular value decomposition.Moreover,we consider the least squares{P,Q,k+1}-reflexive and anti-reflexive solutions to the system.Finally,we give an algorithm to illustrate the results of this paper.
基金National Natural Science Foundation of China ( No. 60875007)
文摘The matrix equations (AX, XBH)=(C, DH) have been widely used in structural design, parameter identification, linear optimal control, and so on. But few researches studied the reflexive solutions. A new approach for the reflexive solutions to the matrix equations was proposed. By applying the canonical correlation decomposition (CCD) of matrix pairs, the necessary and sufficient conditions for the existence and the general expression for the reflexive solutions of the matrix equations (AX, XBH)=(C, DH) were established. In addition, by using the methods of space decomposition, the expression of the optimal approximation solution to a given matrix was derived.
基金Research supported by the National Natural Science Foundation of China. (10571047)
文摘Let S∈Rn×n be a symmetric and nontrival involution matrix. We say that A∈E R n×n is a symmetric reflexive matrix if AT = A and SAS = A. Let S R r n×n(S)={A|A= AT,A = SAS, A∈Rn×n}. This paper discusses the following two problems. The first one is as follows. Given Z∈Rn×m (m < n),∧= diag(λ1,...,λm)∈Rm×m, andα,β∈R withα<β. Find a subset (?)(Z,∧,α,β) of SRrn×n(S) such that AZ = Z∧holds for any A∈(?)(Z,∧,α,β) and the remaining eigenvaluesλm+1 ,...,λn of A are located in the interval [α,β], Moreover, for a given B∈Rn×n, the second problem is to find AB∈(?)(Z,∧,α,β) such that where ||.|| is the Frobenius norm. Using the properties of symmetric reflexive matrices, the two problems are essentially decomposed into the same kind of subproblems for two real symmetric matrices with smaller dimensions, and then the expressions of the general solution for the two problems are derived.
基金supported by China Postdoctoral Science Foundation (Grant No. 2004035645)
文摘In this paper, we first consider the least-squares solution of the matrix inverse problem as follows: Find a hermitian anti-reflexive matrix corresponding to a given generalized reflection matrix J such that for given matrices X, B we have minA ||AX - B||. The existence theorems are obtained, and a general representation of such a matrix is presented. We denote the set of such matrices by SE. Then the matrix nearness problem for the matrix inverse problem is discussed. That is: Given an arbitrary A^*, find a matrix A E SE which is nearest to A^* in Frobenius norm. We show that the nearest matrix is unique and provide an expression for this nearest matrix.
基金Supported by the National Natural Science Foundation of China(10471085)
文摘Necessary and sufficient conditions are given for the existence of the general solution, the centrosymmetric solution, and the centroskewsymmetric solution to a system of linear matrix equations over an arbitrary skew field. The representations of such the solutions of the system are also derived.
基金Project supported by the National Natural Science Foundation of China (Grant No.60672160)
文摘In this paper, a system of complex matrix equations was studied. Necessary and sufficient conditions for the existence and the expression of generalized bipositive semidefinite solution to the system were given. In addition, a criterion for a matrix to be generalized bipositive semidefinite was determined.
文摘Let be a given Hermitian matrix satisfying . Using the eigenvalue decomposition of , we consider the least squares solutions to the matrix equation , with the constraint .
文摘In this paper,the Hermitian reflexive(Anti-Hermitian reflexive)least-squares so-lutions of matrix equations(AX = B,XC = D)are considered.With special properties of partitioned matrices and Hermitian reflexive(Anti-Hermitian reflexive)matrices,the general expression of the solution is obtained.Moreover,the related optimal approximation problem to a given matrix over the solution set is considered.
文摘The concept of reflexive property is introduced by Mason. This note concerns a ring-theoretic property of matrix rings over reflexive rings. We introduce the concept of weakly reflexive rings as a generalization of reflexive rings. From any ring, we can construct weakly reflexive rings but not reflexive, using its lower nilradical. We study various useful properties of such rings in relation with ideals in matrix rings, showing that this new property is Morita invariant. We also investigate the weakly reflexive property of several sorts of ring extensions which have roles in ring theory.