针对某航天电子管壳焊接组件冷却过程中的热力耦合影响问题,建立了焊接组件的有限元热分析模型,研究了在快速冷却过程中梯度材料分布对低温共烧陶瓷(low temperature co-fired ceramic,LTCC)基板、梯度管壳的残余应力和变形的影响。以...针对某航天电子管壳焊接组件冷却过程中的热力耦合影响问题,建立了焊接组件的有限元热分析模型,研究了在快速冷却过程中梯度材料分布对低温共烧陶瓷(low temperature co-fired ceramic,LTCC)基板、梯度管壳的残余应力和变形的影响。以不超过基板断裂强度为前提条件,以降低管壳整体的残余应力与变形为优化目标,采用了多因素变换优选法,确定了管壳材料的最优梯度分布方案,即合金管壳自上而下的梯度分布为Al-35Si、Al-42Si、Al-50Si、Al-60Si、Al-70Si。其中,Al-35Si厚度为2.5mm,Al-42Si与Al-60Si的厚度均为1.6mm,Al-50Si厚度为0.8mm,Al-70Si厚度为2mm。在该方案下,LTCC基板冷却至室温时的最大变形量为4.86μm,最大第一主应力为6761MPa,远小于LTCC材料的断裂强度320MPa;管壳冷却至室温时的最大变形量为18.291μm,最大残余应力值为20.46MPa,远小于管壳材料的屈服强度100MPa。管壳各层之间的应力集中现象不明显,管壳的整体焊接质量得到提升。展开更多
铁氧体隔离器作为一种大量应用于5G通讯基站的通讯元器件,其可靠性关系到基站整机运行的持续性与稳定性,而隔离器的衰减片存在的焊接空洞问题可能导致隔离器在再流焊过程中发生失效,严重时导致基站电路板烧毁,因此管控及降低衰减片焊接...铁氧体隔离器作为一种大量应用于5G通讯基站的通讯元器件,其可靠性关系到基站整机运行的持续性与稳定性,而隔离器的衰减片存在的焊接空洞问题可能导致隔离器在再流焊过程中发生失效,严重时导致基站电路板烧毁,因此管控及降低衰减片焊接空洞率十分重要。首先对铁氧体隔离器的衰减片焊接空洞产生的机理进行分析,并通过实验设计(Design of Experiment,DOE)对点锡过程中可能导致焊接空洞问题的因素进行了析因分析及点锡工艺的优化。实验结果表明,通过控制点锡轨迹及点锡速度,能显著减少焊接空洞,并明显提升该焊接过程的制程能力,大幅提升了分布参数隔离器的可靠度,降低了隔离器经历再流焊后失效的风险。展开更多
文摘针对某航天电子管壳焊接组件冷却过程中的热力耦合影响问题,建立了焊接组件的有限元热分析模型,研究了在快速冷却过程中梯度材料分布对低温共烧陶瓷(low temperature co-fired ceramic,LTCC)基板、梯度管壳的残余应力和变形的影响。以不超过基板断裂强度为前提条件,以降低管壳整体的残余应力与变形为优化目标,采用了多因素变换优选法,确定了管壳材料的最优梯度分布方案,即合金管壳自上而下的梯度分布为Al-35Si、Al-42Si、Al-50Si、Al-60Si、Al-70Si。其中,Al-35Si厚度为2.5mm,Al-42Si与Al-60Si的厚度均为1.6mm,Al-50Si厚度为0.8mm,Al-70Si厚度为2mm。在该方案下,LTCC基板冷却至室温时的最大变形量为4.86μm,最大第一主应力为6761MPa,远小于LTCC材料的断裂强度320MPa;管壳冷却至室温时的最大变形量为18.291μm,最大残余应力值为20.46MPa,远小于管壳材料的屈服强度100MPa。管壳各层之间的应力集中现象不明显,管壳的整体焊接质量得到提升。
文摘铁氧体隔离器作为一种大量应用于5G通讯基站的通讯元器件,其可靠性关系到基站整机运行的持续性与稳定性,而隔离器的衰减片存在的焊接空洞问题可能导致隔离器在再流焊过程中发生失效,严重时导致基站电路板烧毁,因此管控及降低衰减片焊接空洞率十分重要。首先对铁氧体隔离器的衰减片焊接空洞产生的机理进行分析,并通过实验设计(Design of Experiment,DOE)对点锡过程中可能导致焊接空洞问题的因素进行了析因分析及点锡工艺的优化。实验结果表明,通过控制点锡轨迹及点锡速度,能显著减少焊接空洞,并明显提升该焊接过程的制程能力,大幅提升了分布参数隔离器的可靠度,降低了隔离器经历再流焊后失效的风险。