Steam reforming of long-chain hydrocarbon fuels for hydrogen production has received great attention for thermal management of the hypersonic vehicle and fuel-cell application.In this work,Pt catalysts supported on Ce...Steam reforming of long-chain hydrocarbon fuels for hydrogen production has received great attention for thermal management of the hypersonic vehicle and fuel-cell application.In this work,Pt catalysts supported on CeO_(2)and Tb-doped CeO_(2)were prepared by a precipitation method.The physical structure and chemical properties of the as-prepared catalysts were characterized by powder X-ray diffraction,scanning electron microscopy,transmission electron microscopy,Raman spectroscopy,H_(2)temperature programmed reduction,and X-ray photoelectron spectroscopy.The results show that Tb-doped CeO_(2)supported Pt possesses abundant surface oxygen vacancies,good inhibition of ceria sintering,and strong metal-support interaction compared with CeO_(2)supported Pt.The catalytic performance of hydrogen production via steam reforming of long-chain hydrocarbon fuels(n-dodecane)was tested.Compared with 2Pt/CeO_(2),2Pt/Ce_(0.9)Tb_(0.1)O_(2),and 2Pt/Ce_(0.5)Tb_(0.5)O_(2),the 2Pt/Ce_(0.7)Tb_(0.3)O_(2)has higher activity and stability for hydrogen production,on which the conversion of n-dodecane was maintained at about 53.2%after 600 min reaction under 700℃at liquid space velocity of 9 ml·g^(-1)·h^(-1).2Pt/CeO_(2)rapidly deactivated,the conversion of n-dodecane was reduced to only 41.6%after 600 min.展开更多
CuO-CeO2 catalysts were prepared by a urea precipitation method for the oxidative steam reforming of ethanol at low-temperature.The catalytic performance was evaluated and the catalysts were characterized by inductive...CuO-CeO2 catalysts were prepared by a urea precipitation method for the oxidative steam reforming of ethanol at low-temperature.The catalytic performance was evaluated and the catalysts were characterized by inductively coupled plasma atomic emission spectroscopy,X-ray diffraction,temperature-programmed reduction,field emission scanning electron microscopy and thermo-gravimetric analysis.Over CuOCeO2 catalysts,H2 with low CO content was produced in the whole tested temperature range of 250–450 C.The non-noble metal catalyst 20CuCe showed higher H2production rate than 1%Rh/CeO2 catalyst at 300–400 C and the advantage was more obvious after 20 h testing at400 C.These results further confirmed that CuO-CeO2 catalysts may be suitable candidates for low temperature hydrogen production from ethanol.展开更多
Silicon nitride(Si_(3)N_(4))supported cobalt catalysts(Co/Si_(3)N_(4))were fabricated by using wetness impregnation procedure.The microscopic morphology,phase composition,and electronic states were characterized by XR...Silicon nitride(Si_(3)N_(4))supported cobalt catalysts(Co/Si_(3)N_(4))were fabricated by using wetness impregnation procedure.The microscopic morphology,phase composition,and electronic states were characterized by XRD,TEM,SEM,and XPS,respectively.For comparison,cobalt catalyst supported on SiO_(2)(Co/SiO_(2))was also investigated.XPS studies and DFT calculations show that the cobalt species in Co/Si_(3)N_(4) have lower valence state than those in Co/SiO_(2).The catalytic ESR reactions demonstrate that Co/Si_(3)N_(4) exhibits distinctly higher catalytic activity and hydrogen selectivity than Si_(3)N_(4) support and Co/SiO_(2) catalyst with the identical cobalt loading,indicative of the favorable effect of Si_(3)N_(4) support on the catalytic performance of supported cobalt catalyst.Durability tests and TG-DSC studies show that Co/Si_(3)N_(4) catalyst exhibits better stability and resistance to coke during the same catalytic experiment period.展开更多
Hydrogen production by steam reforming of ethylene glycol(EG) at 300℃ was investigated over SiO2 and CeO2 supported Pt–Ni bimetallic catalysts prepared by incipient wetness impregnation methods. It was observed that...Hydrogen production by steam reforming of ethylene glycol(EG) at 300℃ was investigated over SiO2 and CeO2 supported Pt–Ni bimetallic catalysts prepared by incipient wetness impregnation methods. It was observed that impregnation sequence of Pt and Ni can affect the performance of catalysts apparently. Catalyst with Pt first and then Ni addition showed higher EG conversion and H2 yield owing to the Ni enrichment on the surface and the proper interaction between Pt and Ni. It was observed that although SiO2 supported catalysts exhibited better activity and H2 selectivity, CeO2 supported ones had better stability. This is attributed to the less coke formation on CeO2. Increasing Pt/Ni ratio enhanced the reaction activity, and Pt3–Ni7 catalysts with 3 wt% Pt and 7 wt% Ni showed the highest activity and stability. Ni surficial enrichment facilitated the C-C bond rupture and water gas shift reactions;and Pt addition inhibited methanation reaction. Electron transfer and hydrogen spillover from Pt to Ni suppressed carbon deposition. These combined effects lead to the excellent performance of Pt3–Ni7 supported catalysts.展开更多
Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the ...Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the catalyst design strategies for preparing the Ni supported on ZSM-5 zeolite catalysts to promote ESR.Specifically,two-dimensional ZSM-5 nanosheet and conventional ZSM-5 crystal were used as the catalyst carriers and two synthesis strategies,i.e.,in situ encapsulation and wet impregnation method,were employed to prepare the catalysts.Based on the comparative characterization of the catalysts and comparative catalytic assessments,it was found that the combination of the in situ encapsulation synthesis and the ZSM-5 nanosheet carrier was the effective strategy to develop catalysts for promoting H_(2) production via ESR due to the improved mass transfer(through the 2-D structure of ZSM-5 nanosheet)and formation of confined small Ni nanoparticles(resulted via the in situ encapsulation synthesis).In addition,the resulting ZSM-5 nanosheet supported Ni catalyst also showed high Ni dispersion and high accessibility to Ni sites by the reactants,being able to improve the activity and stability of catalysts and suppress metal sintering and coking during ESR at high reaction temperatures.Thus,the Ni supported on ZSM-5 nanosheet catalyst prepared by encapsulation showed the stable performance with~88% ethanol conversion and~65% H_(2) yield achieved during a 48-h longevity test at 550-C.展开更多
Hydrogen energy,the cleanest fuel,presents extensive applications in renewable energy technologies such as fuel cells.However,the transition process from carbon-based(fossil fuel)energy to desired hydrogen energy is u...Hydrogen energy,the cleanest fuel,presents extensive applications in renewable energy technologies such as fuel cells.However,the transition process from carbon-based(fossil fuel)energy to desired hydrogen energy is usually hindered by inevitable scientific,technological,and economic obstacles,which mainly involves complex hydrocarbon reforming reactions.Hence,this paper provides a systematic and comprehensive analysis focusing on the hydrocarbon reforming mechanism.Accordingly,recent related studies are summarized to clarify the intrinsic difference among the reforming mechanism.Aiming to objectively assess the activated catalyst and deactivation mechanism,the rate-determining steps of reforming process have been emphasized,summarized,and analyzed.Specifically,the effect of metals and supports on individual reaction processes is discussed followed by the metalsupport interaction.Current tendency and research map could be established to promote the technology development and expansion of hydrocarbon reforming field.This review could be considered as the guideline for academics and industry designing appropriate catalysts.展开更多
Steam reforming (SR) of dimethyl ether (DME) was investigated for the production of hydrogen for fuel cells. The activity of a series of solid acids for DME hydrolysis was investigated. The solid acid catalysts we...Steam reforming (SR) of dimethyl ether (DME) was investigated for the production of hydrogen for fuel cells. The activity of a series of solid acids for DME hydrolysis was investigated. The solid acid catalysts were ZSM-5 [Si/A] = 25, 38 and 50: denoted Z(Si/Al)] and acidic alumina (γ-Al2O3) with an acid strength order that was Z(25)〉Z(38)〉Z(50)〉γ-Al2O3. Stronger acidity gave higher DME hydrolysis conversion. Physical mixtures containing a CuO-ZnO-Al2O3-ZrO2 catalyst and solid acid catalyst to couple DME hydrolysis and methanol SR were used to examine the acidity effects on DME SR. DME SR activity strongly depended on the activity for DME hydrolysis. Z(25) was the best solid acid catalyst for DME, SR and gave a DME conversion〉90% IT= 240℃,n(H20)/n(DME) = 3.5, space velocity = 1179 ml.(g cat)^-1.h^-1, and P= 0.1MPa]. The influences of the reaction temperature, space velocity and feed molar ratio were studied. Hydrogen production significantly depended on temperature and space velocity. A bifunctional catalyst of CuO-ZnO-Al2O3-ZrO2 catalyst and ZSM-5 gave a high H2 production rate and CO2 selectivity.展开更多
Y2O3-Al2O3 with different mole ratios of Y:Al were prepared by co-precipitation method. Catalysts Ni/Y2O3, Ni/Al2O3 and Ni/ Y2O3-Al2O3 were prepared by impregnation method. The result of BET showed that Al2O3 with re...Y2O3-Al2O3 with different mole ratios of Y:Al were prepared by co-precipitation method. Catalysts Ni/Y2O3, Ni/Al2O3 and Ni/ Y2O3-Al2O3 were prepared by impregnation method. The result of BET showed that Al2O3 with relative high surface area was in favor of Ni distribution, whilst the TPR test demonstrated that composite support had appropriate synergistic effect between active constituent and sup-port, and NiO could be reduced more easily than loaded on the single support. H2-TPD test indicated that the catalyst NYA11 had lots of ac-tivity sites where H could be desorbed easily, which led to hydrogen-rich production over the catalyst. Composite support catalysts exhibited high activity for ethanol steam reforming (SRE), and the supported catalyst with composite of 1:1 mole ratio of Y:Al exhibited the optimum catalytic properties for SRE. Ethanol could be completely converted over catalyst NYA11 even at 450 °C, and there had no inactivation after 60 h continuous reaction, hydrogen yield appeared maximum 35.9% at 400 ℃, and tended to increase with increasing H2O/EtOH molar ratio and feed flow rate.展开更多
This study focused on measurement of the autothermal reforming of biogas over a Ni based monolithic catalyst. The effects of the steam/CH4 (S/C) ratio, O2/CH4 (O2/C) ratio and temperature were investigated. The CH...This study focused on measurement of the autothermal reforming of biogas over a Ni based monolithic catalyst. The effects of the steam/CH4 (S/C) ratio, O2/CH4 (O2/C) ratio and temperature were investigated. The CH4 conversions were higher under all examined temperatures than the equilibrium conversion calculated using the blank outlet temperature, because the catalyst layer was heated by the exothermic catalytic partial oxidation reaction. The CH 4conversion increased with increasing O2/C ratio. Moreover, the CH4 conversion was higher than the equilibrium conversion calculated using the blank outlet temperature for O2/C〉0.42 and reached about 100% at O2/C=0.55. However, the hydrogen concentration decreased for O2/C〉0.45 because hydrogen was combusted to steam in the presence of excess oxygen. On the other hand, the hydrogen and CO2 concentrations increased and the CO concentration decreased with increasing SIC ratio. As a result, it was found that the highest hydrogen concentrations and CH4 conversions were attained at the O2/C ratios of 0.45-0.55 and the SIC ratios of 1.5-2.5. Moreover, the H2/CO ratio could also be controlled in the range from about 2 to 3.5 to give at least 90% CH4 conversion, by regulating the O2/C or S/C ratios.展开更多
Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attenti...Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (SIC) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction.展开更多
In this study, the catalyst composition in binary ZnO-Al<sub>2</sub>O<sub>3</sub> catalyst was initially evaluated and optimized for methanol steam reforming. Then different Na contents were lo...In this study, the catalyst composition in binary ZnO-Al<sub>2</sub>O<sub>3</sub> catalyst was initially evaluated and optimized for methanol steam reforming. Then different Na contents were loaded by an incipient wetness impregnation method onto the optimized ZnAl catalyst. It was found that the activity was greatly enhanced by the modification of Na, which depended on the Na content in the catalyst. The methanol conversion was 96% on a 0.1 Na/0.4 ZnAl catalyst (GHSV = 14,040 h<sup>-</sup><sup>1</sup>, S/C = 1.4, 350°C), which was much higher with respect to a Na-free 0.4 ZnAl catalyst (74%). The remarkable improvement of activity was attributed to a weakening of the C-H bonds and clear of hydroxyl group by the Na dopant leading to an accelerated dehydrogenation of the reaction intermediates formed on ZnAl<sub>2</sub>O<sub>4</sub> spinel surface and thus the overall reaction.展开更多
In this study, the laminated porous metal fiber sintered felt(PMFSF) functioning as catalyst support was used in a cylindrical methanol steam reforming(MSR) microreactor for hydrogen production. The PMFSF was fabricat...In this study, the laminated porous metal fiber sintered felt(PMFSF) functioning as catalyst support was used in a cylindrical methanol steam reforming(MSR) microreactor for hydrogen production. The PMFSF was fabricated by the low temperature solid-phase sintering method using metal fibers such as copper fibers and aluminum fibers which are obtained by the multi-tooth cutting method. The two-layer impregnation method was employed to coat Cu/Zn/Al/Zr catalyst on the PMFSF. The effect of fiber material, uniform porosity and gradient porosity on the performance of methano steam reforming microreactor was studied by varying the gas hourly space velocity(GHSV) and reaction temperature. Our results showed that the loading strength of porous copper fiber sintered felt(PCFSF) was better than porous aluminum fiber sintered felt(PAFSF). Under the same reaction conditions, the PCFSF showed higher methanol conversion and more H_2 output than PAFSF. Moreover, the gradient porosity(Type 5: 90%×80%×70%) of PMFSF used as the catalyst support in microreactor demonstrated a best reaction performance for hydrogen production.展开更多
This work demonstrates a two-step method to produce oxide-derived Cu nanowires on Cu mesh surface to offer a monolithic catalyst that outstandingly improves the hydrogen production from reforming formaldehyde and wate...This work demonstrates a two-step method to produce oxide-derived Cu nanowires on Cu mesh surface to offer a monolithic catalyst that outstandingly improves the hydrogen production from reforming formaldehyde and water under ambient conditions.Our results not only reveal that the special oxidederived nanostructure can significantly improve the formaldehyde reforming performance of Cu,but also display that the hydrogen production has a linear relationship with oxygen pressure.Specially,a maximum of 36 times increment in hydrogen generation rate is observed than that without oxygen during the reaction.Density functional theory calculations show that the formaldehyde molecule is adsorbed on Cu surface only when the adsorbed oxygen is in adjacency,and hydrogen release process is the ratedetermining step.This work highlights that the activity of deliberately synthesized catalyst can further be promoted by dynamic chemical modulation of surface states during working.展开更多
High surface area CeO2 was prepared by the surfactant-assisted route and was employed as catalyst support. The 0-3 at.% Cu doped Cu-Ni/CeO2 catalysts with 10 wt.% and 15 wt.% of total metal loading were prepared by an...High surface area CeO2 was prepared by the surfactant-assisted route and was employed as catalyst support. The 0-3 at.% Cu doped Cu-Ni/CeO2 catalysts with 10 wt.% and 15 wt.% of total metal loading were prepared by an impregnation-coprecipitation method. The influence of Cu atomic content on the catalytic performance was investigated on the steam reforming of ethanol (SRE) for H2 production and the catalysts were characterized by N2 adsorption, inductively coupled plasma (ICP), X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature-programmed rerduction (TPR) and H2-pulse chemisorption techniques. The activity and products distribution behaviors of the catalysts were significantly affected by the doped Cu molar content based on the promotion effect on the dispersion of NiO particles and the interactions between Cu-Ni metal and CeO2 support. Significant increase in the ethanol conversion and hydrogen selectivity were obtained when moderate Cu metal was doped into the Ni/CeO2 catalyst. Over both of the 10Ni98.5Cu1.5/CeO2 and 15Ni98.5Cu1.5/CeO2 catalysts, more than 80% of ethanol conversion and 60% of H2 selectivity were obtained in the ethanol steam-reforming when the reaction temperature was above 450 ℃.展开更多
Glycerol steam reforming(GSR)is one of the promising technologies that can realize renewable hydrogen production and efficient utilization of crude glycerol.To illuminate the functions of Ca content(3%,6%,9%,and 12%,b...Glycerol steam reforming(GSR)is one of the promising technologies that can realize renewable hydrogen production and efficient utilization of crude glycerol.To illuminate the functions of Ca content(3%,6%,9%,and 12%,by mass)and preparation method for Ni/ATP catalyst structure and its catalytic behaviors,the Ni-xCa/ATP(x=3%,6%,9%,and 12%,by mass)catalysts are prepared by co-impregnation(ci)and hydrothermal synthesis(hs)method and then tested in GSR.Characterization results of XRD,N_(2) adsorption–desorption,H_(2)-TPR,HRTEM,XPS,and NH_(3)/CO_(2)-TPD demonstrate that the combined effect between appropriate Ca additive(6%,by mass)and hs enhance catalyst reducibility,uniform distribution of Ca additive and nickel species over ATP,and adsorption for CO_(2).This attributes to hs method protects the ATP framework through suppressing the interaction of Ca with ATP and promotes the formation of NiCaOx interface sites.Therefore,Ni-6Ca/ATP-hs exhibits the highest conversion(86.77%)of glycerol to gas product and H_(2) yield(76.17%)and selectivity(58.56%)during GSR.Furthermore,XRD,HRTEM,TGDTG and Raman analyses confirm that Ni-6Ca/ATP-hs also reveals outstanding anti-sintering and coke resistance.In addition,the structural evolution process of Ni/ATP catalyst with Ca introduction and hs method is presented.Considering the high performance,simple preparation process and low cost,the as-prepared catalyst providing new opportunities for utilization of glycerol derived from biodiesel industry.展开更多
In this study, the production of synthesis gases has been purposed under between 250<sup>o</sup>C - 700<sup>o</sup>C and 1 - 2 bars pressures. The research was conducted over a commercial BASF ...In this study, the production of synthesis gases has been purposed under between 250<sup>o</sup>C - 700<sup>o</sup>C and 1 - 2 bars pressures. The research was conducted over a commercial BASF catalyst and a laboratory prepared catalyst. The catalyst has a content of different substances including basically NiO/Al<sub>2</sub>O<sub>3</sub> and some additionals (Ca, Mg, Cr, Si). The experimental measurements were carried out within a recently developed experimental equipment which can be operated up to 1200<sup>o</sup> and 1 to 3 bars pressures. The study was conducted over a commercial BASF catalyst and a laboratory prepared catalyst under different ethanol/water ratios, temperatures, and catalyst loads. Under the condition when ethanol/water ratios were decreased from 1/2 to 1/10, it was observed that hydrogen ratios increased in exit gas composition of the reactor. With increments in catalyst loads from 1 to 5 grammes, hydrogen ratios in exit gas composition gradually increased. Reaction of ethanol-steam reforming started nearly at 300<sup>o</sup>C, and when temperature increments continued further up to 700<sup>o</sup>C, hydrogen yields in exit gas compositions of the reactor increased significantly to a range of 70% - 80%. In the case of using commercial BASF catalyst, hydrogen ratios in exit gas composition were found slightly higher than laboratory prepared catalyst. According to our observations, life time of laboratory prepared catalyst was found higher than the commercial BASF catalyst. In this study which kinetic measurements were applied, some kinetic parameters of ethanol-steam reaction were calculated. The mean activation energy of ethanol consumptions at 573<sup>o</sup>K - 973<sup>o</sup>K was found as 26.87 kJ/mol, approximately. All kinetic measurements were analyzed with a first order reaction rate model. In this study, some diffusion limitations existed, however, overall reaction was chemically controlled.展开更多
基金supported by the Key Research and Design Program of Qinhuangdao(202101A005)the Science and Technology Project of Hebei Education Department(QN2023094)+2 种基金the Cultivation Project for Basic Research and Innovation of Yanshan University(2021LGQN028)the Project for Research and Development of Metal Catalysts for Photo-thermal Decomposition of Waste Plastics to Prepare Value-added Chemicals(x2023322)the Subsidy for Hebei Key Laboratory of Applied Chemistry after Operation Performance(22567616H).
文摘Steam reforming of long-chain hydrocarbon fuels for hydrogen production has received great attention for thermal management of the hypersonic vehicle and fuel-cell application.In this work,Pt catalysts supported on CeO_(2)and Tb-doped CeO_(2)were prepared by a precipitation method.The physical structure and chemical properties of the as-prepared catalysts were characterized by powder X-ray diffraction,scanning electron microscopy,transmission electron microscopy,Raman spectroscopy,H_(2)temperature programmed reduction,and X-ray photoelectron spectroscopy.The results show that Tb-doped CeO_(2)supported Pt possesses abundant surface oxygen vacancies,good inhibition of ceria sintering,and strong metal-support interaction compared with CeO_(2)supported Pt.The catalytic performance of hydrogen production via steam reforming of long-chain hydrocarbon fuels(n-dodecane)was tested.Compared with 2Pt/CeO_(2),2Pt/Ce_(0.9)Tb_(0.1)O_(2),and 2Pt/Ce_(0.5)Tb_(0.5)O_(2),the 2Pt/Ce_(0.7)Tb_(0.3)O_(2)has higher activity and stability for hydrogen production,on which the conversion of n-dodecane was maintained at about 53.2%after 600 min reaction under 700℃at liquid space velocity of 9 ml·g^(-1)·h^(-1).2Pt/CeO_(2)rapidly deactivated,the conversion of n-dodecane was reduced to only 41.6%after 600 min.
基金supported by the National Basic Research Program of China (2010CB732304)the National Natural Science Foundation of China (21177142 and 20973193)
文摘CuO-CeO2 catalysts were prepared by a urea precipitation method for the oxidative steam reforming of ethanol at low-temperature.The catalytic performance was evaluated and the catalysts were characterized by inductively coupled plasma atomic emission spectroscopy,X-ray diffraction,temperature-programmed reduction,field emission scanning electron microscopy and thermo-gravimetric analysis.Over CuOCeO2 catalysts,H2 with low CO content was produced in the whole tested temperature range of 250–450 C.The non-noble metal catalyst 20CuCe showed higher H2production rate than 1%Rh/CeO2 catalyst at 300–400 C and the advantage was more obvious after 20 h testing at400 C.These results further confirmed that CuO-CeO2 catalysts may be suitable candidates for low temperature hydrogen production from ethanol.
基金by the National Natural Science Foundation of China(Nos.21671154,U1732147)the Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials(WKDM202210)the State Key Laboratory of Refractories(SKLAR202009)。
文摘Silicon nitride(Si_(3)N_(4))supported cobalt catalysts(Co/Si_(3)N_(4))were fabricated by using wetness impregnation procedure.The microscopic morphology,phase composition,and electronic states were characterized by XRD,TEM,SEM,and XPS,respectively.For comparison,cobalt catalyst supported on SiO_(2)(Co/SiO_(2))was also investigated.XPS studies and DFT calculations show that the cobalt species in Co/Si_(3)N_(4) have lower valence state than those in Co/SiO_(2).The catalytic ESR reactions demonstrate that Co/Si_(3)N_(4) exhibits distinctly higher catalytic activity and hydrogen selectivity than Si_(3)N_(4) support and Co/SiO_(2) catalyst with the identical cobalt loading,indicative of the favorable effect of Si_(3)N_(4) support on the catalytic performance of supported cobalt catalyst.Durability tests and TG-DSC studies show that Co/Si_(3)N_(4) catalyst exhibits better stability and resistance to coke during the same catalytic experiment period.
基金supported by Natural Science Foundation of China (Grant 21273193, 21473231 and 20973148)
文摘Hydrogen production by steam reforming of ethylene glycol(EG) at 300℃ was investigated over SiO2 and CeO2 supported Pt–Ni bimetallic catalysts prepared by incipient wetness impregnation methods. It was observed that impregnation sequence of Pt and Ni can affect the performance of catalysts apparently. Catalyst with Pt first and then Ni addition showed higher EG conversion and H2 yield owing to the Ni enrichment on the surface and the proper interaction between Pt and Ni. It was observed that although SiO2 supported catalysts exhibited better activity and H2 selectivity, CeO2 supported ones had better stability. This is attributed to the less coke formation on CeO2. Increasing Pt/Ni ratio enhanced the reaction activity, and Pt3–Ni7 catalysts with 3 wt% Pt and 7 wt% Ni showed the highest activity and stability. Ni surficial enrichment facilitated the C-C bond rupture and water gas shift reactions;and Pt addition inhibited methanation reaction. Electron transfer and hydrogen spillover from Pt to Ni suppressed carbon deposition. These combined effects lead to the excellent performance of Pt3–Ni7 supported catalysts.
基金funding from the European Union's Horizon 2020 Research and Innovation Program(872102)P.S.thanks the Science Achievement Scholarship of Thailand(SAST)for her research secondment at The University of Manchester.Y.J.thanks the National Natural Science Foundation of China(22378407)for funding.
文摘Compared to reforming reactions using hydrocarbons,ethanol steam reforming(ESR)is a sustainable alternative for hydrogen(H_(2))production since ethanol can be produced sustainably using biomass.This work explores the catalyst design strategies for preparing the Ni supported on ZSM-5 zeolite catalysts to promote ESR.Specifically,two-dimensional ZSM-5 nanosheet and conventional ZSM-5 crystal were used as the catalyst carriers and two synthesis strategies,i.e.,in situ encapsulation and wet impregnation method,were employed to prepare the catalysts.Based on the comparative characterization of the catalysts and comparative catalytic assessments,it was found that the combination of the in situ encapsulation synthesis and the ZSM-5 nanosheet carrier was the effective strategy to develop catalysts for promoting H_(2) production via ESR due to the improved mass transfer(through the 2-D structure of ZSM-5 nanosheet)and formation of confined small Ni nanoparticles(resulted via the in situ encapsulation synthesis).In addition,the resulting ZSM-5 nanosheet supported Ni catalyst also showed high Ni dispersion and high accessibility to Ni sites by the reactants,being able to improve the activity and stability of catalysts and suppress metal sintering and coking during ESR at high reaction temperatures.Thus,the Ni supported on ZSM-5 nanosheet catalyst prepared by encapsulation showed the stable performance with~88% ethanol conversion and~65% H_(2) yield achieved during a 48-h longevity test at 550-C.
基金This work was financially supported by National Key Research&Development Project of China[2022YFB4002203]National Natural Science Foundation of China[52072135,22005227].
文摘Hydrogen energy,the cleanest fuel,presents extensive applications in renewable energy technologies such as fuel cells.However,the transition process from carbon-based(fossil fuel)energy to desired hydrogen energy is usually hindered by inevitable scientific,technological,and economic obstacles,which mainly involves complex hydrocarbon reforming reactions.Hence,this paper provides a systematic and comprehensive analysis focusing on the hydrocarbon reforming mechanism.Accordingly,recent related studies are summarized to clarify the intrinsic difference among the reforming mechanism.Aiming to objectively assess the activated catalyst and deactivation mechanism,the rate-determining steps of reforming process have been emphasized,summarized,and analyzed.Specifically,the effect of metals and supports on individual reaction processes is discussed followed by the metalsupport interaction.Current tendency and research map could be established to promote the technology development and expansion of hydrocarbon reforming field.This review could be considered as the guideline for academics and industry designing appropriate catalysts.
基金Supported by the Ministry of Science and Technology (G1999022408) and the National Natural Science Foundation of China (20773075).
文摘Steam reforming (SR) of dimethyl ether (DME) was investigated for the production of hydrogen for fuel cells. The activity of a series of solid acids for DME hydrolysis was investigated. The solid acid catalysts were ZSM-5 [Si/A] = 25, 38 and 50: denoted Z(Si/Al)] and acidic alumina (γ-Al2O3) with an acid strength order that was Z(25)〉Z(38)〉Z(50)〉γ-Al2O3. Stronger acidity gave higher DME hydrolysis conversion. Physical mixtures containing a CuO-ZnO-Al2O3-ZrO2 catalyst and solid acid catalyst to couple DME hydrolysis and methanol SR were used to examine the acidity effects on DME SR. DME SR activity strongly depended on the activity for DME hydrolysis. Z(25) was the best solid acid catalyst for DME, SR and gave a DME conversion〉90% IT= 240℃,n(H20)/n(DME) = 3.5, space velocity = 1179 ml.(g cat)^-1.h^-1, and P= 0.1MPa]. The influences of the reaction temperature, space velocity and feed molar ratio were studied. Hydrogen production significantly depended on temperature and space velocity. A bifunctional catalyst of CuO-ZnO-Al2O3-ZrO2 catalyst and ZSM-5 gave a high H2 production rate and CO2 selectivity.
基金Project supported by National Natural Science Foundation of China (20863006,21166018)Natural Science Foundation committee of Jiangxi Province,China (0620042)Department of Education of Jiangxi Province (GJJ09078)
文摘Y2O3-Al2O3 with different mole ratios of Y:Al were prepared by co-precipitation method. Catalysts Ni/Y2O3, Ni/Al2O3 and Ni/ Y2O3-Al2O3 were prepared by impregnation method. The result of BET showed that Al2O3 with relative high surface area was in favor of Ni distribution, whilst the TPR test demonstrated that composite support had appropriate synergistic effect between active constituent and sup-port, and NiO could be reduced more easily than loaded on the single support. H2-TPD test indicated that the catalyst NYA11 had lots of ac-tivity sites where H could be desorbed easily, which led to hydrogen-rich production over the catalyst. Composite support catalysts exhibited high activity for ethanol steam reforming (SRE), and the supported catalyst with composite of 1:1 mole ratio of Y:Al exhibited the optimum catalytic properties for SRE. Ethanol could be completely converted over catalyst NYA11 even at 450 °C, and there had no inactivation after 60 h continuous reaction, hydrogen yield appeared maximum 35.9% at 400 ℃, and tended to increase with increasing H2O/EtOH molar ratio and feed flow rate.
基金supported by the greenhouse gas mitigation technology development program"Technology Developments on Hydrogen Production from Biomass and Waste"organized by the National Institute for Environmental Studies(NIES)for 2002~2008 in trust from the Ministry of the Environment(MOE)
文摘This study focused on measurement of the autothermal reforming of biogas over a Ni based monolithic catalyst. The effects of the steam/CH4 (S/C) ratio, O2/CH4 (O2/C) ratio and temperature were investigated. The CH4 conversions were higher under all examined temperatures than the equilibrium conversion calculated using the blank outlet temperature, because the catalyst layer was heated by the exothermic catalytic partial oxidation reaction. The CH 4conversion increased with increasing O2/C ratio. Moreover, the CH4 conversion was higher than the equilibrium conversion calculated using the blank outlet temperature for O2/C〉0.42 and reached about 100% at O2/C=0.55. However, the hydrogen concentration decreased for O2/C〉0.45 because hydrogen was combusted to steam in the presence of excess oxygen. On the other hand, the hydrogen and CO2 concentrations increased and the CO concentration decreased with increasing SIC ratio. As a result, it was found that the highest hydrogen concentrations and CH4 conversions were attained at the O2/C ratios of 0.45-0.55 and the SIC ratios of 1.5-2.5. Moreover, the H2/CO ratio could also be controlled in the range from about 2 to 3.5 to give at least 90% CH4 conversion, by regulating the O2/C or S/C ratios.
基金supported by the National Natural Science Foundation of China(No.21176137) and Petro China
文摘Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (SIC) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction.
文摘In this study, the catalyst composition in binary ZnO-Al<sub>2</sub>O<sub>3</sub> catalyst was initially evaluated and optimized for methanol steam reforming. Then different Na contents were loaded by an incipient wetness impregnation method onto the optimized ZnAl catalyst. It was found that the activity was greatly enhanced by the modification of Na, which depended on the Na content in the catalyst. The methanol conversion was 96% on a 0.1 Na/0.4 ZnAl catalyst (GHSV = 14,040 h<sup>-</sup><sup>1</sup>, S/C = 1.4, 350°C), which was much higher with respect to a Na-free 0.4 ZnAl catalyst (74%). The remarkable improvement of activity was attributed to a weakening of the C-H bonds and clear of hydroxyl group by the Na dopant leading to an accelerated dehydrogenation of the reaction intermediates formed on ZnAl<sub>2</sub>O<sub>4</sub> spinel surface and thus the overall reaction.
基金supported by the Natural Science Fundation of Fujian Province of China (No. 2017J06015)the Foundation of Public Welfare Research and Capacity Building in Guangdong Province (No. 2014A010106002)+2 种基金the State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP, SINOPEC) under Project No. 33600000-15-ZC06070004the supports from the Fundamental Research Funds for Central Universities, the Xiamen University (No. 20720160079)the Collaborative Innovation Center of HighEnd Equipment Manufacturing in Fujian are also acknowledged
文摘In this study, the laminated porous metal fiber sintered felt(PMFSF) functioning as catalyst support was used in a cylindrical methanol steam reforming(MSR) microreactor for hydrogen production. The PMFSF was fabricated by the low temperature solid-phase sintering method using metal fibers such as copper fibers and aluminum fibers which are obtained by the multi-tooth cutting method. The two-layer impregnation method was employed to coat Cu/Zn/Al/Zr catalyst on the PMFSF. The effect of fiber material, uniform porosity and gradient porosity on the performance of methano steam reforming microreactor was studied by varying the gas hourly space velocity(GHSV) and reaction temperature. Our results showed that the loading strength of porous copper fiber sintered felt(PCFSF) was better than porous aluminum fiber sintered felt(PAFSF). Under the same reaction conditions, the PCFSF showed higher methanol conversion and more H_2 output than PAFSF. Moreover, the gradient porosity(Type 5: 90%×80%×70%) of PMFSF used as the catalyst support in microreactor demonstrated a best reaction performance for hydrogen production.
基金supported by the China Bao Wu Low Carbon Metallurgical Innovation Foundation(No.BWLCF202113)the Fundamental Research Funds for the Central Universities(Nos.N2202012,N180206004)the National Natural Science Foundation of China(No.51971059)。
文摘This work demonstrates a two-step method to produce oxide-derived Cu nanowires on Cu mesh surface to offer a monolithic catalyst that outstandingly improves the hydrogen production from reforming formaldehyde and water under ambient conditions.Our results not only reveal that the special oxidederived nanostructure can significantly improve the formaldehyde reforming performance of Cu,but also display that the hydrogen production has a linear relationship with oxygen pressure.Specially,a maximum of 36 times increment in hydrogen generation rate is observed than that without oxygen during the reaction.Density functional theory calculations show that the formaldehyde molecule is adsorbed on Cu surface only when the adsorbed oxygen is in adjacency,and hydrogen release process is the ratedetermining step.This work highlights that the activity of deliberately synthesized catalyst can further be promoted by dynamic chemical modulation of surface states during working.
基金Project supported by the National Natural Science Foundation (21076047)the Natural Science Foundation of Zhongkai University of Agriculture and Engineering (G3100026)
文摘High surface area CeO2 was prepared by the surfactant-assisted route and was employed as catalyst support. The 0-3 at.% Cu doped Cu-Ni/CeO2 catalysts with 10 wt.% and 15 wt.% of total metal loading were prepared by an impregnation-coprecipitation method. The influence of Cu atomic content on the catalytic performance was investigated on the steam reforming of ethanol (SRE) for H2 production and the catalysts were characterized by N2 adsorption, inductively coupled plasma (ICP), X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature-programmed rerduction (TPR) and H2-pulse chemisorption techniques. The activity and products distribution behaviors of the catalysts were significantly affected by the doped Cu molar content based on the promotion effect on the dispersion of NiO particles and the interactions between Cu-Ni metal and CeO2 support. Significant increase in the ethanol conversion and hydrogen selectivity were obtained when moderate Cu metal was doped into the Ni/CeO2 catalyst. Over both of the 10Ni98.5Cu1.5/CeO2 and 15Ni98.5Cu1.5/CeO2 catalysts, more than 80% of ethanol conversion and 60% of H2 selectivity were obtained in the ethanol steam-reforming when the reaction temperature was above 450 ℃.
基金the financial assistance from the National Natural Science Foundation of China (51906001 and 51876001)University Natural Science Research Project of Anhui Province (KJ2020ZD31)+1 种基金Key Research and Development Projects of Anhui Province (202004a06020053)Doctoral Fund project of Anhui University of Science and Technology
文摘Glycerol steam reforming(GSR)is one of the promising technologies that can realize renewable hydrogen production and efficient utilization of crude glycerol.To illuminate the functions of Ca content(3%,6%,9%,and 12%,by mass)and preparation method for Ni/ATP catalyst structure and its catalytic behaviors,the Ni-xCa/ATP(x=3%,6%,9%,and 12%,by mass)catalysts are prepared by co-impregnation(ci)and hydrothermal synthesis(hs)method and then tested in GSR.Characterization results of XRD,N_(2) adsorption–desorption,H_(2)-TPR,HRTEM,XPS,and NH_(3)/CO_(2)-TPD demonstrate that the combined effect between appropriate Ca additive(6%,by mass)and hs enhance catalyst reducibility,uniform distribution of Ca additive and nickel species over ATP,and adsorption for CO_(2).This attributes to hs method protects the ATP framework through suppressing the interaction of Ca with ATP and promotes the formation of NiCaOx interface sites.Therefore,Ni-6Ca/ATP-hs exhibits the highest conversion(86.77%)of glycerol to gas product and H_(2) yield(76.17%)and selectivity(58.56%)during GSR.Furthermore,XRD,HRTEM,TGDTG and Raman analyses confirm that Ni-6Ca/ATP-hs also reveals outstanding anti-sintering and coke resistance.In addition,the structural evolution process of Ni/ATP catalyst with Ca introduction and hs method is presented.Considering the high performance,simple preparation process and low cost,the as-prepared catalyst providing new opportunities for utilization of glycerol derived from biodiesel industry.
文摘In this study, the production of synthesis gases has been purposed under between 250<sup>o</sup>C - 700<sup>o</sup>C and 1 - 2 bars pressures. The research was conducted over a commercial BASF catalyst and a laboratory prepared catalyst. The catalyst has a content of different substances including basically NiO/Al<sub>2</sub>O<sub>3</sub> and some additionals (Ca, Mg, Cr, Si). The experimental measurements were carried out within a recently developed experimental equipment which can be operated up to 1200<sup>o</sup> and 1 to 3 bars pressures. The study was conducted over a commercial BASF catalyst and a laboratory prepared catalyst under different ethanol/water ratios, temperatures, and catalyst loads. Under the condition when ethanol/water ratios were decreased from 1/2 to 1/10, it was observed that hydrogen ratios increased in exit gas composition of the reactor. With increments in catalyst loads from 1 to 5 grammes, hydrogen ratios in exit gas composition gradually increased. Reaction of ethanol-steam reforming started nearly at 300<sup>o</sup>C, and when temperature increments continued further up to 700<sup>o</sup>C, hydrogen yields in exit gas compositions of the reactor increased significantly to a range of 70% - 80%. In the case of using commercial BASF catalyst, hydrogen ratios in exit gas composition were found slightly higher than laboratory prepared catalyst. According to our observations, life time of laboratory prepared catalyst was found higher than the commercial BASF catalyst. In this study which kinetic measurements were applied, some kinetic parameters of ethanol-steam reaction were calculated. The mean activation energy of ethanol consumptions at 573<sup>o</sup>K - 973<sup>o</sup>K was found as 26.87 kJ/mol, approximately. All kinetic measurements were analyzed with a first order reaction rate model. In this study, some diffusion limitations existed, however, overall reaction was chemically controlled.