The nature of support and type of active metal affect catalytic performance. In this work, the effect of using La203 as promoter and support for Ni/γ-A1203 catalysts in dry reforming of methane was investigated. The ...The nature of support and type of active metal affect catalytic performance. In this work, the effect of using La203 as promoter and support for Ni/γ-A1203 catalysts in dry reforming of methane was investigated. The reforming reactions were carried out at atmosphenc pressure in the temperature range of 500-2700℃. The activity and stability of the catalyst, carbon formation, and syngas (H2/CO) ratio were determined. Various techniques were applied for characterization of both fresh and used catalysts. Addition of La2O3 to the catalyst matrix improved the dispersion of Ni and adsorption of CO2, thus its activity and stability enhanced.展开更多
Ni catalysts supported on Al2O3, ZrO2-Al2O3, CeO2-Al2O3 and ZrO2-CeO2-Al2O3 were prepared by coprecipitation method, and their catalytic performances for autothermal reforming of methane to hydrogen were investigated....Ni catalysts supported on Al2O3, ZrO2-Al2O3, CeO2-Al2O3 and ZrO2-CeO2-Al2O3 were prepared by coprecipitation method, and their catalytic performances for autothermal reforming of methane to hydrogen were investigated. The Ni-supported catalysts were characterized by XRD, TPR and XPS. The relationship between the structures and catalytic activities of the catalysts was discussed. The results showed that the catalytic activity and stability of the Ni/ZrO2-CeO2-Al2O3 catalyst was better than those of other catalysts with the highest CH4 conversion, H2/CO and H2/COx ratio at 750 ℃. The catalyst showed a little deactivation along the reaction time during its 72 h on stream with the mean deactivation rate of 0.08%/h. The catalytic performance of the Ni/ZrO2-CeO2-Al2O3 catalyst was also affected by reaction temperature, no2 : nCH4 molar ratio and nH2O : nCH4 molar ratio. TPR, XRD and XPS measurements indicated that the formation of ZrO2-CeO2 solid solution could improve the dispersion of NiO, and inhibit the formation of NiAl2O3, and thus significantly promoted the catalytic activity of the Ni/ZrO2-CeO2-Al2O3 catalyst.展开更多
In the current study, the hybrid effect of a corona discharge and γ-alumina supported Ni catalysts in CO2 reforming of methane is investigated. The study includes both purely catalytic operation in the temperature ra...In the current study, the hybrid effect of a corona discharge and γ-alumina supported Ni catalysts in CO2 reforming of methane is investigated. The study includes both purely catalytic operation in the temperature range of 923-1023 K, and hybrid catalytic-plasma operation of DC corona discharge reactor at room temperature and ambient pressure. The effect of feed flow rate, discharge power and Ni/γ-Al2O3 catalysts are studied. When CH4/CO2 ratio in the feed is 1/2, the syngas of low Ha/CO ratio at about 0.56 is obtained, which is a potential feedstock for synthesis of liquid hydrocarbons. Although Ni catalyst is only active above 573 K, presence of Ni catalysts in the cold corona plasma reactor (T≤523 K) shows promising increase in the conversions of methane and carbon dioxide. When Ni catalysts are used in the plasma reaction, H2/CO ratios in the products are slightly modified, selectivity to CO increases whereas fewer by-products such as hydrocarbons and oxygenates are formed.展开更多
Nanostructured -y-A12O3 with high surface area and mesoporous structure was synthesized by sol-gel method and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared sa...Nanostructured -y-A12O3 with high surface area and mesoporous structure was synthesized by sol-gel method and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by XRD, N2 adsorption-desorption, TPR, TPO, TPH, NH3-TPD and SEM techniques. The BET analysis showed a high surface area of 204 m2.g-1 and a narrow pore-size distribution centered at a diameter of 5.5 nm for catalyst support. The BET results revealed that addition of lanthanum oxide to aluminum oxide decreased the specific surface area. In addition, TPR results showed that addition of lanthanum oxide increased the reducibility of nickel catalyst. The catalytic evaluation results showed an increase in methane conversion with increasing lanthanum oxide to 3 mol% and further increase in lanthanum content decreased the catalytic activity. TPO analysis revealed that the coke deposition decreased with increasing lanthanum oxide to 3 mol%. SEM and TPH analyses confirmed the formation of whisker type carbon over the spent catalysts. Addition of steam and Oxide to drv reformin feed increased the methane conversion and led to carbon free ooeration in combined orocesses.展开更多
γ-Al2O3 supported Ni-Mn bimetallic catalysts for CO2 reforming of methane were prepared by impregnation method. The reforming reactions were conducted at 500-700℃ and atmospheric pressure using CO2/CH4/N2 with feed ...γ-Al2O3 supported Ni-Mn bimetallic catalysts for CO2 reforming of methane were prepared by impregnation method. The reforming reactions were conducted at 500-700℃ and atmospheric pressure using CO2/CH4/N2 with feed ratio of 17/17/2, at total flow rate of 36 mL/min. The catalytic performance was assessed through CH4 and CO2 conversions, synthesis gas ratio (H2/CO) and long term stability. Catalytic activity and stability tests revealed that addition of Mn improved catalytic performance and led to higher stability of bimetallic catalysts which presented better coke suppression than monometallic catalyst. In this work, the optimum loading of Mn which exhibited the most stable performance and least coke deposition was 0.5wt%. The fresh and spent catalysts were characterized by various techniques such as Brunauer-Emmett-Teller, the temperature programmed desorption CO2- TPD, thermogravimetric analysis, X-ray diffraction, scanning electron microscope, EDX, and infrared spectroscopy.展开更多
The Influence of ultrasonic treatment on the coking amount of a nickel-based catalyst (Ni/γ-Al2O3) for the reaction of reforming with carbon dioxide of Benzene was investigated. The results show that ultrasonic tre...The Influence of ultrasonic treatment on the coking amount of a nickel-based catalyst (Ni/γ-Al2O3) for the reaction of reforming with carbon dioxide of Benzene was investigated. The results show that ultrasonic treatment modify the pore size distribution of the catalysts significantly and also reduce the amount of coke formed on the catalyst. The reduction in the coking amount is not sensitive to the power output of the ultrasonic treatment device in the power range tested (120 W and 500 W).展开更多
Excess crude glycerol derived as a by-product from biodiesel industry prompts the need to valorise glycerol to value-added chemicals.In this context,catalytic steam reforming of glycerol(SRG) was proposed as a promisi...Excess crude glycerol derived as a by-product from biodiesel industry prompts the need to valorise glycerol to value-added chemicals.In this context,catalytic steam reforming of glycerol(SRG) was proposed as a promising and sustainable alternative for producing renewable hydrogen(H2).Herein,the development of nickel(Ni) supported on ceria-modified mesoporous γ-alumina(γ-Al2 O3) catalysts and their applications in catalytic SRG(at550-750℃ atmospheric pressure and weight hourly space velocity,WHSV,of 44,122 ml·g^-1·h^-1(STP)) is presented.Properties of the developed catalysts were characterised using many technique s.The findings show that ceria modification improved Ni dispersion on γ-Al2 O3 catalyst support with highly active small Ni particles,which led to a remarkable catalytic performance with the total glycerol conversion(ca.99%),glycerol conversion into gaseous products(ca.77%) and H2 yield(ca.62%).The formation rate for H2 production(14.4 ×10^(-5)mol·s^-1·g^-1, TOF(H2)=3412 s^-1) was significantly improved with the Ni@12 Ce-Al2 O3 catalyst,representing nearly a 2-fold increase compared with that of the conventional Ni@AI2 O3 catalyst.In addition,the developed catalyst also exhibited comparatively high stability(for 12 h) and coke resistance ability.展开更多
Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the s...Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the surface acid-base properties of catalysts by introduction of alkali metal (Na, K) oxides inhibits the carbonization and as a result, improves the operational stability of these catalysts. An effect of promotion of nickel-alumina based composite doped by lanthanum oxide is found. This effect, caused by an additional route for the CO2 activation on Ni-La2O3/Al2O3/cordierite catalyst, is displayed in increase of methane conversion under conditions of an oxidant excess.展开更多
A new complex [Ni(en)3]4[HVⅣ12VⅤ6O42(PO4)] has been hydrothermally synthesize d and characterized by X-Ray diffraction,IR and Elemental analysis.Single crystal X-ray analysis indicates that this compoud cry stal...A new complex [Ni(en)3]4[HVⅣ12VⅤ6O42(PO4)] has been hydrothermally synthesize d and characterized by X-Ray diffraction,IR and Elemental analysis.Single crystal X-ray analysis indicates that this compoud cry stallizes in cubic system,space group Im3m with a=17.4081(2)*!,V=5275.38(10)*! 3 ,R=0.0420,w R=0.1055,Z =2,D c =1.663g·cm -3 ,μ=2.297mm -1 ,F(000)=2636.The crystal structure consis ts of[Ni (en) 3 ] 2+ cations and{HV 18 O 42 (PO 4 )} 8- cluster anion which construct from 18{VO 5 }.square pyramids.The VO 5 pyramids joined each other to form a {V 18 O 42 }cage hosting a tetrahedral{PO 4 } 3- moiety with disordered oxygen atoms .CCDC:185574.展开更多
A Hydrothermal reaction of MoO 3, NiCl 2·6H 2O, WO 3 and H 2O with a molar ratio of 1∶0.6∶1∶83.3 gives a rhombic-shaped black crystal [NiMo 12O 40H 10{Ni(H 2O) 3} 4]. It crystallizes in a tetragonal system wit...A Hydrothermal reaction of MoO 3, NiCl 2·6H 2O, WO 3 and H 2O with a molar ratio of 1∶0.6∶1∶83.3 gives a rhombic-shaped black crystal [NiMo 12O 40H 10{Ni(H 2O) 3} 4]. It crystallizes in a tetragonal system with space group I4 1/amd and unit cell parameters a=b=1.518 4(2) nm, c=3.082 9(6) nm, Z=4, V=7.108(2) nm 3, R=0.067 1, wR=0.217 8. The compound possesses a four-capped Keggin structure. The structure of the Keggin- [NiMo 12O 40H 10] 8- consists of twelve MoO 6 octahedrons and a NiO 4 tetrahedron on the center. Four [Ni(H 2O) 3] 2+ at the cap positions are linked to Keggin-structure by three μ 3-O, respectively. The calculation of bond valence shows that the oxidation state of Mo in the compound is +5.展开更多
基金the Deanship of Scientific Research at KSU for funding the work through the research group Project # RGP-VPP119
文摘The nature of support and type of active metal affect catalytic performance. In this work, the effect of using La203 as promoter and support for Ni/γ-A1203 catalysts in dry reforming of methane was investigated. The reforming reactions were carried out at atmosphenc pressure in the temperature range of 500-2700℃. The activity and stability of the catalyst, carbon formation, and syngas (H2/CO) ratio were determined. Various techniques were applied for characterization of both fresh and used catalysts. Addition of La2O3 to the catalyst matrix improved the dispersion of Ni and adsorption of CO2, thus its activity and stability enhanced.
基金supported by Guangdong Provincial Natural Science Foundation of China(030514)Science and Technology Plan of Guangdong Province of China(2004B33401006)Doctoral Startup Foundation of Guang Dong Pharmaceutical University.
文摘Ni catalysts supported on Al2O3, ZrO2-Al2O3, CeO2-Al2O3 and ZrO2-CeO2-Al2O3 were prepared by coprecipitation method, and their catalytic performances for autothermal reforming of methane to hydrogen were investigated. The Ni-supported catalysts were characterized by XRD, TPR and XPS. The relationship between the structures and catalytic activities of the catalysts was discussed. The results showed that the catalytic activity and stability of the Ni/ZrO2-CeO2-Al2O3 catalyst was better than those of other catalysts with the highest CH4 conversion, H2/CO and H2/COx ratio at 750 ℃. The catalyst showed a little deactivation along the reaction time during its 72 h on stream with the mean deactivation rate of 0.08%/h. The catalytic performance of the Ni/ZrO2-CeO2-Al2O3 catalyst was also affected by reaction temperature, no2 : nCH4 molar ratio and nH2O : nCH4 molar ratio. TPR, XRD and XPS measurements indicated that the formation of ZrO2-CeO2 solid solution could improve the dispersion of NiO, and inhibit the formation of NiAl2O3, and thus significantly promoted the catalytic activity of the Ni/ZrO2-CeO2-Al2O3 catalyst.
基金supported by the National Iranian Oil Company (N.I.O.C.)
文摘In the current study, the hybrid effect of a corona discharge and γ-alumina supported Ni catalysts in CO2 reforming of methane is investigated. The study includes both purely catalytic operation in the temperature range of 923-1023 K, and hybrid catalytic-plasma operation of DC corona discharge reactor at room temperature and ambient pressure. The effect of feed flow rate, discharge power and Ni/γ-Al2O3 catalysts are studied. When CH4/CO2 ratio in the feed is 1/2, the syngas of low Ha/CO ratio at about 0.56 is obtained, which is a potential feedstock for synthesis of liquid hydrocarbons. Although Ni catalyst is only active above 573 K, presence of Ni catalysts in the cold corona plasma reactor (T≤523 K) shows promising increase in the conversions of methane and carbon dioxide. When Ni catalysts are used in the plasma reaction, H2/CO ratios in the products are slightly modified, selectivity to CO increases whereas fewer by-products such as hydrocarbons and oxygenates are formed.
基金supported by University of Kashan(Grant No.158426/29)
文摘Nanostructured -y-A12O3 with high surface area and mesoporous structure was synthesized by sol-gel method and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by XRD, N2 adsorption-desorption, TPR, TPO, TPH, NH3-TPD and SEM techniques. The BET analysis showed a high surface area of 204 m2.g-1 and a narrow pore-size distribution centered at a diameter of 5.5 nm for catalyst support. The BET results revealed that addition of lanthanum oxide to aluminum oxide decreased the specific surface area. In addition, TPR results showed that addition of lanthanum oxide increased the reducibility of nickel catalyst. The catalytic evaluation results showed an increase in methane conversion with increasing lanthanum oxide to 3 mol% and further increase in lanthanum content decreased the catalytic activity. TPO analysis revealed that the coke deposition decreased with increasing lanthanum oxide to 3 mol%. SEM and TPH analyses confirmed the formation of whisker type carbon over the spent catalysts. Addition of steam and Oxide to drv reformin feed increased the methane conversion and led to carbon free ooeration in combined orocesses.
文摘γ-Al2O3 supported Ni-Mn bimetallic catalysts for CO2 reforming of methane were prepared by impregnation method. The reforming reactions were conducted at 500-700℃ and atmospheric pressure using CO2/CH4/N2 with feed ratio of 17/17/2, at total flow rate of 36 mL/min. The catalytic performance was assessed through CH4 and CO2 conversions, synthesis gas ratio (H2/CO) and long term stability. Catalytic activity and stability tests revealed that addition of Mn improved catalytic performance and led to higher stability of bimetallic catalysts which presented better coke suppression than monometallic catalyst. In this work, the optimum loading of Mn which exhibited the most stable performance and least coke deposition was 0.5wt%. The fresh and spent catalysts were characterized by various techniques such as Brunauer-Emmett-Teller, the temperature programmed desorption CO2- TPD, thermogravimetric analysis, X-ray diffraction, scanning electron microscope, EDX, and infrared spectroscopy.
基金Supported by National "211" Key Discipline Development Program, Natural Science Foundation of Hubei Province(2006AB 192), Science Foundation of Wuhan(20066002064), China.
文摘The Influence of ultrasonic treatment on the coking amount of a nickel-based catalyst (Ni/γ-Al2O3) for the reaction of reforming with carbon dioxide of Benzene was investigated. The results show that ultrasonic treatment modify the pore size distribution of the catalysts significantly and also reduce the amount of coke formed on the catalyst. The reduction in the coking amount is not sensitive to the power output of the ultrasonic treatment device in the power range tested (120 W and 500 W).
基金funding from European Union's Horizon 2020 research and innovation programme under grant agreement No.872102financial support by the Petroleum Technology Development Fund(PTDF),Nigeria(PTDF/ED/OSS/PHD/IA/1209/17)+2 种基金financial support from the European Commission Marie Sklodowska-Curie Individual Fellowship(H2020-MSCAIF-NTPleasure-748196)the Chinese Scholarship Council(CSC)for her academic visiting fellowship at the University of Manchester(No.201708440477)the Foundation of Department of Education of Guangdong Province(Nos.2017KZDXM085,2018KZDXM070)。
文摘Excess crude glycerol derived as a by-product from biodiesel industry prompts the need to valorise glycerol to value-added chemicals.In this context,catalytic steam reforming of glycerol(SRG) was proposed as a promising and sustainable alternative for producing renewable hydrogen(H2).Herein,the development of nickel(Ni) supported on ceria-modified mesoporous γ-alumina(γ-Al2 O3) catalysts and their applications in catalytic SRG(at550-750℃ atmospheric pressure and weight hourly space velocity,WHSV,of 44,122 ml·g^-1·h^-1(STP)) is presented.Properties of the developed catalysts were characterised using many technique s.The findings show that ceria modification improved Ni dispersion on γ-Al2 O3 catalyst support with highly active small Ni particles,which led to a remarkable catalytic performance with the total glycerol conversion(ca.99%),glycerol conversion into gaseous products(ca.77%) and H2 yield(ca.62%).The formation rate for H2 production(14.4 ×10^(-5)mol·s^-1·g^-1, TOF(H2)=3412 s^-1) was significantly improved with the Ni@12 Ce-Al2 O3 catalyst,representing nearly a 2-fold increase compared with that of the conventional Ni@AI2 O3 catalyst.In addition,the developed catalyst also exhibited comparatively high stability(for 12 h) and coke resistance ability.
文摘Nickel-alumina catalysts supported on cordierite monoliths of honeycomb structure surpass essentially the conventional granulated ones with respect to the output in carbon dioxide reforming of methane. Adjusting the surface acid-base properties of catalysts by introduction of alkali metal (Na, K) oxides inhibits the carbonization and as a result, improves the operational stability of these catalysts. An effect of promotion of nickel-alumina based composite doped by lanthanum oxide is found. This effect, caused by an additional route for the CO2 activation on Ni-La2O3/Al2O3/cordierite catalyst, is displayed in increase of methane conversion under conditions of an oxidant excess.
文摘A new complex [Ni(en)3]4[HVⅣ12VⅤ6O42(PO4)] has been hydrothermally synthesize d and characterized by X-Ray diffraction,IR and Elemental analysis.Single crystal X-ray analysis indicates that this compoud cry stallizes in cubic system,space group Im3m with a=17.4081(2)*!,V=5275.38(10)*! 3 ,R=0.0420,w R=0.1055,Z =2,D c =1.663g·cm -3 ,μ=2.297mm -1 ,F(000)=2636.The crystal structure consis ts of[Ni (en) 3 ] 2+ cations and{HV 18 O 42 (PO 4 )} 8- cluster anion which construct from 18{VO 5 }.square pyramids.The VO 5 pyramids joined each other to form a {V 18 O 42 }cage hosting a tetrahedral{PO 4 } 3- moiety with disordered oxygen atoms .CCDC:185574.
文摘A Hydrothermal reaction of MoO 3, NiCl 2·6H 2O, WO 3 and H 2O with a molar ratio of 1∶0.6∶1∶83.3 gives a rhombic-shaped black crystal [NiMo 12O 40H 10{Ni(H 2O) 3} 4]. It crystallizes in a tetragonal system with space group I4 1/amd and unit cell parameters a=b=1.518 4(2) nm, c=3.082 9(6) nm, Z=4, V=7.108(2) nm 3, R=0.067 1, wR=0.217 8. The compound possesses a four-capped Keggin structure. The structure of the Keggin- [NiMo 12O 40H 10] 8- consists of twelve MoO 6 octahedrons and a NiO 4 tetrahedron on the center. Four [Ni(H 2O) 3] 2+ at the cap positions are linked to Keggin-structure by three μ 3-O, respectively. The calculation of bond valence shows that the oxidation state of Mo in the compound is +5.