Advanced high alumina refractory castables of ultra-low and to cement types, are well-known because of their ability on developing similar and/or superior thermal and mechanical properties. Following the recent trend ...Advanced high alumina refractory castables of ultra-low and to cement types, are well-known because of their ability on developing similar and/or superior thermal and mechanical properties. Following the recent trend of including nanoparticles in refractory castables, in this work, it is presented a novel way to obtain the benefit effects on the thermal and mechanical properties, promoted by the development in situ, of alumina’s nanoparticles in the matrix of castable (85 wt% Al2O3). The alumina nanoparticles were originated in situ after firing, due to the pyrolysis and oxidation of an aqueous resin, produced by the Pechini process. The resin played a double role, one as mixing liquid vehicle and the other as the aluminum oxide nanoparticles precursor. The results indicate a strong increase in flexural strength and elastic modulus as well as leading to a higher residual strength after thermal shock.展开更多
基金The authors thank the support of the Sao Paulo State Research Funding FAPESP through CDMF/CEPID programto Capes for the scholarship to Jose Antonio Alves Jr.
文摘Advanced high alumina refractory castables of ultra-low and to cement types, are well-known because of their ability on developing similar and/or superior thermal and mechanical properties. Following the recent trend of including nanoparticles in refractory castables, in this work, it is presented a novel way to obtain the benefit effects on the thermal and mechanical properties, promoted by the development in situ, of alumina’s nanoparticles in the matrix of castable (85 wt% Al2O3). The alumina nanoparticles were originated in situ after firing, due to the pyrolysis and oxidation of an aqueous resin, produced by the Pechini process. The resin played a double role, one as mixing liquid vehicle and the other as the aluminum oxide nanoparticles precursor. The results indicate a strong increase in flexural strength and elastic modulus as well as leading to a higher residual strength after thermal shock.