It is known that many kinds of fermentative antibiotics can be removed by temperatureenhanced hydrolysis from production wastewater based on their easy-to-hydrolyze characteristics.However,a few aminoglycosides are ha...It is known that many kinds of fermentative antibiotics can be removed by temperatureenhanced hydrolysis from production wastewater based on their easy-to-hydrolyze characteristics.However,a few aminoglycosides are hard to hydrolyze below 100℃ because of their stability expressed by high molecular energy gap(E).Herein,removal of hard-to-hydrolyze kanamycin residue from production wastewater by hydrothermal treatment at subcritical temperatures was investigated.The results showed the reaction temperature had a significant impact on kanamycin degradation.The degradation half-life(t1/2)was shortened by 87.17-fold when the hydrothermal treatment temperature was increased from 100℃ to 180℃.The t1/2 of kanamycin in the N2 process was extended by 1.08-1.34-fold compared to that of the corresponding air process at reaction temperatures of 140-180℃,indicating that the reactions during hydrothermal treatment process mainly include oxidation and hydrolysis.However,the contribution of hydrolysis was calculated as 75%-98%,which showed hydrolysis played a major role during the process,providing possibilities for the removal of kanamycin from production wastewaters with high-concentration organic matrices.Five transformation products with lower antibacterial activity than kanamycin were identified using UPLC-QTOF-MS analysis.More importantly,hydrothermal treatment could remove 97.9%of antibacterial activity(kanamycin EQ,1,109 mg/L)from actual production wastewater with CODCr around 100,000 mg/L.Furthermore,the methane production yield in anaerobic inhibition tests could be increased about 2.3 times by adopting the hydrothermal pretreatment.Therefore,it is concluded that hydrothermal treatment as a pretreatment technology is an efficient method for removing high-concentration hard-to-hydrolyze antibiotic residues from wastewater with high-concentration organic matrices.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21590814 and 81861138051)。
文摘It is known that many kinds of fermentative antibiotics can be removed by temperatureenhanced hydrolysis from production wastewater based on their easy-to-hydrolyze characteristics.However,a few aminoglycosides are hard to hydrolyze below 100℃ because of their stability expressed by high molecular energy gap(E).Herein,removal of hard-to-hydrolyze kanamycin residue from production wastewater by hydrothermal treatment at subcritical temperatures was investigated.The results showed the reaction temperature had a significant impact on kanamycin degradation.The degradation half-life(t1/2)was shortened by 87.17-fold when the hydrothermal treatment temperature was increased from 100℃ to 180℃.The t1/2 of kanamycin in the N2 process was extended by 1.08-1.34-fold compared to that of the corresponding air process at reaction temperatures of 140-180℃,indicating that the reactions during hydrothermal treatment process mainly include oxidation and hydrolysis.However,the contribution of hydrolysis was calculated as 75%-98%,which showed hydrolysis played a major role during the process,providing possibilities for the removal of kanamycin from production wastewaters with high-concentration organic matrices.Five transformation products with lower antibacterial activity than kanamycin were identified using UPLC-QTOF-MS analysis.More importantly,hydrothermal treatment could remove 97.9%of antibacterial activity(kanamycin EQ,1,109 mg/L)from actual production wastewater with CODCr around 100,000 mg/L.Furthermore,the methane production yield in anaerobic inhibition tests could be increased about 2.3 times by adopting the hydrothermal pretreatment.Therefore,it is concluded that hydrothermal treatment as a pretreatment technology is an efficient method for removing high-concentration hard-to-hydrolyze antibiotic residues from wastewater with high-concentration organic matrices.