Rollover and jack-knifing of tractor semi-trailer are serious threats for vehicle safety, and accordingly active safety technologies have been widely used to reduce or prevent the occurrence of such accidents. However...Rollover and jack-knifing of tractor semi-trailer are serious threats for vehicle safety, and accordingly active safety technologies have been widely used to reduce or prevent the occurrence of such accidents. However, currently tractor semi-trailer stability control is generally only a single hazardous condition (rollover or jack-knifing) control, it is difficult to ensure the vehicle comprehensive stability of various dangerous conditions. The main objective of this study is to introduce a multi-objective stability control algorithm which can improve the vehicle stability of a tractor semi-trailer by using differential braking. A vehicle controller is designed to minimize the likelihood of rollover and jack-knifing. First a linear vehicle model of tractor semi-trailer is constructed. Then an optimal yaw control for tractor using differential braking is applied to minimize the yaw rate and lateral acceleration deviation of tractor, as well as the hitch articulation angle of tractor semi-trailer, so as to improve the vehicle stability. Second a braking scheme and variable structure control with sliding mode control are introduced in order to achieve the best braking effect. Last Fishhook maneuver is introduced to the active safety simulation and the active control system effect verification. The simulation results show that multi-objective stability control algorithm of semi-trailer could improve the vehicle stability significantly during the transient maneuvers. The proposed multi-objective stability control algorithm is effective to prevent the vehicle rollover and jackknifing.展开更多
In order to solve internal logistics problems of iron and steel works,such as low transportation efficiency of vehicles and high transportation cost,the production process and traditional transportation style of iron ...In order to solve internal logistics problems of iron and steel works,such as low transportation efficiency of vehicles and high transportation cost,the production process and traditional transportation style of iron and steel works were introduced.The internal transport tasks of iron and steel works were grouped based on cluster analysis according to demand time of the transportation.An improved vehicle scheduling model of semi-trailer swap transport among loading nodes and unloading nodes in one task group was set up.The algorithm was designed to solve the vehicle routing problem with simultaneous pick-up and delivery(VRPSPD) problem based on semi-trailer swap transport.A solving program was written by MATLAB software and the method to figure out the optimal path of each grouping was obtained.The dropping and pulling transportation plan of the tractor was designed.And an example of semi-trailer swap transport in iron and steel works was given.The results indicate that semi-trailer swap transport can decrease the numbers of vehicles and drivers by 54.5% and 88.6% respectively compared with decentralized scheduling in iron and steel works,and the total distance traveled reduces by 43.5%.The semi-trailer swap transport can help the iron and steel works develop the production in intension.展开更多
Shelf-life extension of aquatic products is of significant economical importance. To determine the potential effect of chitosan on the shelf-life of filleted tilapia, this study analyzed the bacterial community divers...Shelf-life extension of aquatic products is of significant economical importance. To determine the potential effect of chitosan on the shelf-life of filleted tilapia, this study analyzed the bacterial community diversity in fresh and spoiled tilapia fillets stored at (4 ± 1)℃ and examined the antimicrobial activity of chitosan against relevant bacteria isolates. Results showed that Pseudomonas (20%) and Aeromonas (16%) were abundant in fresh tilapia fillets, whereas Pseudomonas (52%), Aeromonas (32%) and Staphylococcus (12%) were dominant in the spoiled samples. Chitosan showed wide-spectrum antibacterial activity against bacteria isolated from tilapia and 5.0 g L-1 chitosan was selected for application in preservation. We further determined the shelf-life of chitosan-treated, filleted tilapia stored at (4 ± 1)℃ based on microbiological, biochemical and sensory analyses. Results showed that the shelf-life of chitosan-treated, filleted tilapia was extended to 12 d, whereas that of untreated, control samples was 6 d. These indicate that chitosan, as a natural preservative, has great application potential in the shelf-life extension of tilapia fillets.展开更多
Fish processing environment is very favorable for the growth of microorganisms and highlights a potential risk associated with microbial hazards. The present study investigated the growth behavior of aerobic bacteria,...Fish processing environment is very favorable for the growth of microorganisms and highlights a potential risk associated with microbial hazards. The present study investigated the growth behavior of aerobic bacteria, yeasts and molds, and bacterial pathogens or surrogate (Listeria monocytogenes and Clostridium sporogenes) on thawed and fresh catfish fillets during refrigerated storage (5°C - 7°C). Thawed and fresh fillets were respectively inoculated with L. monocytogenes and C. sporogenes, and packaged in LDPE bags. In uninoculated catfish, the populations of aerobic bacteria, and yeasts and molds increased significantly (P C. sporogenes vegetative cells on fresh catfish fillets. These results indicated that the microbiological quality of refrigerated thawed catfish would become unacceptable within 3 - 4 days. Our results also implied that environmental pathogens such as L. monocytogenes and Clostridium sp. can survive on catfish fillets for extended periods during refrigerated storage. Proper sanitation and hygienic practices are essential to control microbial hazards during handling and processing of catfish fillets.展开更多
Between 1998 and 2002, 25 patients who were treated with a refrigerated or frozen allograft were evaluated. The mean patient age was 48 years. The mean lesion size was 4.5 cm2. Validated outcome instruments [Knee Soci...Between 1998 and 2002, 25 patients who were treated with a refrigerated or frozen allograft were evaluated. The mean patient age was 48 years. The mean lesion size was 4.5 cm2. Validated outcome instruments [Knee Society Score, Western Ontario and McMaster University Score] were used. Clinical and radiographic evaluations were performed pre-operatively and at the most recent follow-up. Histological and electron microscopic analysis was performed on grafts prior to implantation. Clinical follow-up averaged 46 months (range 24 - 60 months). The Western Ontario and McMaster University Score improved from 46 + 24 to 66 + 22 (p = 0.003). The Knee Society Score improved from 104 + 43 to 132 + 42 (p = 0.01). No correlation was noted between graft type and histological or electron microscopy scoring. Post-operative mechanical alignment was not correlated with an improvement in Western Ontario and McMaster University Score (p = 0.19) or Knee Society Score (0.27). Six patients (24%), all refrigerated allografts, were failures and underwent knee arthroplasty. Seventy-six percent of implanted frozen and refrigerated osteochondral allografts are in place 4 years after surgery. Frozen allografts appear to be surviving as well as refrigerated grafts. The use of magnetic resonance imaging may enable the evaluation of graft incorporation and articular cartilage integrity.展开更多
In order to evaluate two different schemes' structural dynamic characters, dynamic response analysis of a commercial truck's main chassis frames is carried out. On the basis of correlation study between the tested a...In order to evaluate two different schemes' structural dynamic characters, dynamic response analysis of a commercial truck's main chassis frames is carried out. On the basis of correlation study between the tested and calculated modal results, the assembled frames' finite element analysis (FEA) models with sufficient precision are built up. Random response analysis in frequency domain is carried out with these FEA models, RMS values of yon Mises and main principle stresses of these two frames are obtained. It shows that the analysis resuits of the distributing tendency and concrete value ranges are coincident very well with test results. And from the results, it could be concluded that frames of scheme A endures relative better loading conditions and should be adopted as the final scheme.展开更多
It is different for the liquid tank semi-trailer to keep roll stability during turning or emergency voidance,and that may cause serious accidents.Although the scholars did lots of research about the roll stability of ...It is different for the liquid tank semi-trailer to keep roll stability during turning or emergency voidance,and that may cause serious accidents.Although the scholars did lots of research about the roll stability of liquid tank semi-trailer in theory by calculating and simulation,how to make an effective early warning of rollover is still unsolved in practice.The reasons include the complex driving condition and the difficulty of the vehicle parameter obtaining.The feasible method used currently is evaluating the roll stability of a liquid tank semi-trailer by the lateral acceleration or the attitude of the vehicle.Unfortunately,the lateral acceleration is more useful for sideslip rather than rollover,and the attitude is a kind of posterior way,which means it is hard to take measures to cope with the rollover accident when the attitude exceeds the safety threshold.Considering the movement of the vehicle is totally caused by the wheel force,the rollover could also be predicted by the changing of the wheel force.Therefore,in this paper,we developed a method to analyze the roll stability by the vertical wheel force.A thorough experiment environment is established,and the effectiveness of the proposed method is verified in real driving conditions.展开更多
We have successfully developed cryogen-free dilution refrigerators with medium cooling power that can be applied to quantum experiments. Breakthroughs have been made in some key technologies and components of heat swi...We have successfully developed cryogen-free dilution refrigerators with medium cooling power that can be applied to quantum experiments. Breakthroughs have been made in some key technologies and components of heat switches and dilution units. Our prototype has been running continuously and stably for more than 100 hours below 10 m K, with a minimum temperature of 7.6 m K and a cooling power of 450 μW at 100 m K. At the same time, we have also made progress in the application of dilution refrigerators, such as quantum computing, low-temperature detector, and magnet integration. These indicators and test results indicate good prospects for application in physics, astronomy, and quantum information.展开更多
Since the nuclear disaster occurred from huge earthquake in Japan 2011, Japanese energy generation system has been expected to prioritize safety and trustworthiness. To meet this requirement, distributed power supply ...Since the nuclear disaster occurred from huge earthquake in Japan 2011, Japanese energy generation system has been expected to prioritize safety and trustworthiness. To meet this requirement, distributed power supply systems are considered to be one of solutions. In this study, we aimed to conserve energy and reduce carbon dioxide emission of supermarket which installed a novel environment-friendly dispersed power. We focused the energy used by refrigerated cabinets. We built small scale model of supermarket which was equipped with dispersed power. From this scale model, the energy conservation effect of supercooling is from 10% to 25% during the summertime and intermediate time. At last, we found that when outside temperature is about 14 ℃ or more, supercooling was effective. In addition, since energy consumption of refrigerated cabinet is influenced by inside enthalpy, we controlled the inside air temperature and humidity by installing desiccant system and examined its effect.展开更多
Refrigeration plays a significant role across various aspects of human life and consumes substantial amounts of electrical energy.The rapid advancement of green cooling technology presents numerous solar-powered refri...Refrigeration plays a significant role across various aspects of human life and consumes substantial amounts of electrical energy.The rapid advancement of green cooling technology presents numerous solar-powered refrigeration systems as viable alternatives to traditional refrigeration equipment.Exergy analysis is a key in identifying actual thermodynamic losses and improving the environmental and economic efficiency of refrigeration systems.In this study exergy analyze has been conducted for a solar-powered vapor compression refrigeration(SP-VCR)system in the region of Gharda颽(Southern Algeria)utilizing R1234ze(E)fluid as an eco-friendly substitute for R134a refrigerant.A MATLAB-based numerical model was developed to evaluate losses in different system components and the exergy efficiency of the SP-VCR system.Furthermore,a parametric study was carriedout to analyze the impact of various operating conditions on the system’s exergy destruction and efficiency.The obtained results revealed that,for both refrigerants,the compressor exhibited the highest exergy destruction,followed by the condenser,expansion valve,and evaporator.However,the system using R1234ze(E)demonstrated lower irreversibility compared to that using R134a refrigerant.The improvements made with R1234ze are 71.95%for the compressor,39.13%for the condenser,15.38%for the expansion valve,5%for the evaporator,and 54.76%for the overall system,which confirm the potential of R1234ze(E)as a promising alternative to R134a for cooling applications.展开更多
The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther...The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.展开更多
High power dissipating artificial intelligence (AI) chips require significant cooling to operate at maximum performance. Current trends regarding the integration of AI, as well as the power/cooling demands of high-per...High power dissipating artificial intelligence (AI) chips require significant cooling to operate at maximum performance. Current trends regarding the integration of AI, as well as the power/cooling demands of high-performing server systems pose an immense thermal challenge for cooling. The use of refrigerants as a direct-to-chip cooling method is investigated as a potential cooling solution for cooling AI chips. Using a vapor compression refrigeration system (VCRS), the coolant temperature will be sub-ambient thereby increasing the total cooling capacity. Coupled with the implementation of a direct-to-chip boiler, using refrigerants to cool AI server systems can materialize as a potential solution for current AI server cooling demands. In this study, a comparison of 8 different refrigerants: R-134a, R-153a, R-717, R-508B, R-22, R-12, R-410a, and R-1234yf is analyzed for optimal performance. A control theoretical VCRS model is created to assess variable refrigerants under the same operational conditions. From this model, the coefficient of performance (COP), required mass flow rate of refrigerant, work required by the compressor, and overall heat transfer coefficient is determined for all 8 refrigerants. Lastly, a comprehensive analysis is provided to determine the most optimal refrigerants for cooling applications. R-717, commonly known as Ammonia, was found to have the highest COP value thus proving to be the optimal refrigerant for cooling AI chips and high-performing server applications.展开更多
Water and ethanol were selected as refrigerants, 13x molecular sieve, silica gel, activated carbon and adsorbents NA and NB prepared by authors were selected as adsorbents, and the performance of adsorption working pa...Water and ethanol were selected as refrigerants, 13x molecular sieve, silica gel, activated carbon and adsorbents NA and NB prepared by authors were selected as adsorbents, and the performance of adsorption working pairs in adsorption refrigeration system was studied. The adsorption isotherms of adsorbents (NA and NB) were obtained by high vacuum gravimetric method. Desorption properties of adsorbents were analyzed and compared by thermal analysis method. The performance parameters of adsorption refrigerat...展开更多
AI coatings with different microstructures were prepared on the surface of Gd using the magnetron sputtering technique to improve its corrosion resistance. The corrosion behaviors for the pure Gd and Gd with Al coatin...AI coatings with different microstructures were prepared on the surface of Gd using the magnetron sputtering technique to improve its corrosion resistance. The corrosion behaviors for the pure Gd and Gd with Al coating in distilled water were studied using the mass loss and electrochemical performance. As a result, pure Gd without coating shows a certain amount of surface cracks under water flow conditions, whereas the polygonal Al coating decreases the path of the corrosive medium to body due to the existence of eroding pits structure. Compared with the polygonal structure Al coating and pure Gd, the lamellar structure of Al coating exhibits a higher electrochemical protection performance (e.g., a lower corrosion current and higher self-corrosion potential) and no occurrence of pitting corrosion. Due to an effective physical shield, the formation of the lamellar structure protected the inner Gd part from being corroded, and prolonged the duration of cathodic protection.展开更多
With the entropy generation minimization (EGM) method, the thermodynamical performance optimization in a thermoelectric refrigeration system is studied. The optimization is affected by the irreversibility of heat tr...With the entropy generation minimization (EGM) method, the thermodynamical performance optimization in a thermoelectric refrigeration system is studied. The optimization is affected by the irreversibility of heat transfer caused by finite temperature differences, the heat leak between external heat reservoirs and the internal dissipation of working fluids. EGM is taken as an objective function for the optimization. The objective function and design parameters are obtained. Optimal performance curves are presented by thermal and electronic parameters. Effects of these parameters on general and optimal performances are investigated. Results are helpful in determining optimal design conditions in real thermoelectric refrigeration systems.展开更多
A solution cooling absorption(SCA)approach is proposed to modify the aqueous ammonia absorption refrigerat-ion cycle using the strong solution from the absorber to cool the forepart of the absorption in the cycle fo...A solution cooling absorption(SCA)approach is proposed to modify the aqueous ammonia absorption refrigerat-ion cycle using the strong solution from the absorber to cool the forepart of the absorption in the cycle for reclaiming some portion of absorption heat.As a consequence of raised temperature at the inlet,the strong solution partially boils at the outlet of the solution heat exchanger,and diminishes the thermal heat consumption of the heat source.The calculation results show that the coefficient of performance(COP)of this modified cycle is about 28.3% higher than that of the traditional cycle under typical conditions;while the required heat transfer area of the total heat exchangers of the cycle is somewhat less than that of the traditional one.The capacity of refrigeration with the new absorption cycle is more than doubled in contrast to the adsorption scheme with an identical configuration.It is sufficient to supply a fishing boat the chilling capacity for preservation of fishing products with the modified cycle chiller driven by its diesel engine exhaust.展开更多
An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variati...An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variation curves of the cooling capacities and the refrigeration coefficients of the system running at three flight altitudes are investigated.The performance of the system is evaluated by the minimum-entropy-generation method and the performance penalty is also calculated.The power variation curves of the cooling system are obtained by an electric power experiment.The peak values of these curves are less than the maximal electric power supply of airborne equipment,proving that the use of the low-power TRS for airborne equipment is feasible.The COP,cooling capacity and entropy generation of the system are relative to the flight altitude and the current of the TRS.Through the analyses of these data,the optimal values of the COP are obtained,and the optimization measures are proposed to maximize the use of the advantages of the TRS.展开更多
The problem of composition shift in zeotropic fluid circulation, which is encountered in modern air conditioning and refrigeration systems, is studied. It reveals that the composition shift phenomena is contributed by...The problem of composition shift in zeotropic fluid circulation, which is encountered in modern air conditioning and refrigeration systems, is studied. It reveals that the composition shift phenomena is contributed by fractionation related to four mechanisms. This paper concentrates on the modeling of component fractionation in heat exchangers. Element approach is employed, and the amount of each component holdup is calculated element by element with a proper void fraction model. The circulation concentration is determined from the refrigerant differential holdup in heat exchangers. Simulations are carried out to prove the validity. The results can improve the reliability and efficiency in zeotropic refrigerant applications.展开更多
This paper analyzes the possibility of applying binary nonazeotropic refrigerants in the jet refrigeration cycle. The thermodynamic cycle performance of two kinds of working pairs (R30/R142b, R30/R124) are calculated ...This paper analyzes the possibility of applying binary nonazeotropic refrigerants in the jet refrigeration cycle. The thermodynamic cycle performance of two kinds of working pairs (R30/R142b, R30/R124) are calculated using the EOS of PR equation of state, and the results are discussed. The theoretical calculations indicate that refrigerating quality can be improved if the binary mixtures evaporate just in the low temperature region. The character of the rejecter to compress two phase medium supports the possibility of this kind of cycle.展开更多
The control scheme of multifunctional refrigerant recovery and filling control system for air conditioning system is presented in this paper.The scheme of hardware circuit based on micro controller unit (MCU) MSP430...The control scheme of multifunctional refrigerant recovery and filling control system for air conditioning system is presented in this paper.The scheme of hardware circuit based on micro controller unit (MCU) MSP430 uses high-precision weighing sensor and high performance amplifier.The software program uses median average filtering algorithm.The device can recycle discarded refrigerant after purification and quantitative filling refrigerant.Meanwhile,the apparatus has the functions of recovery,filling,pressing,vaccumizing,refueling,etc.The system is proved to be of low cost,good stability and high practical value.展开更多
基金supported by Open Research Fund of State Key Laboratory of Automobile Dynamics Simulation, China (Grant No. 20101103)National Natural Science Foundation of China (Grant No. 51075176)
文摘Rollover and jack-knifing of tractor semi-trailer are serious threats for vehicle safety, and accordingly active safety technologies have been widely used to reduce or prevent the occurrence of such accidents. However, currently tractor semi-trailer stability control is generally only a single hazardous condition (rollover or jack-knifing) control, it is difficult to ensure the vehicle comprehensive stability of various dangerous conditions. The main objective of this study is to introduce a multi-objective stability control algorithm which can improve the vehicle stability of a tractor semi-trailer by using differential braking. A vehicle controller is designed to minimize the likelihood of rollover and jack-knifing. First a linear vehicle model of tractor semi-trailer is constructed. Then an optimal yaw control for tractor using differential braking is applied to minimize the yaw rate and lateral acceleration deviation of tractor, as well as the hitch articulation angle of tractor semi-trailer, so as to improve the vehicle stability. Second a braking scheme and variable structure control with sliding mode control are introduced in order to achieve the best braking effect. Last Fishhook maneuver is introduced to the active safety simulation and the active control system effect verification. The simulation results show that multi-objective stability control algorithm of semi-trailer could improve the vehicle stability significantly during the transient maneuvers. The proposed multi-objective stability control algorithm is effective to prevent the vehicle rollover and jackknifing.
基金Project(70671108) supported by the National Natural Science Foundation of China
文摘In order to solve internal logistics problems of iron and steel works,such as low transportation efficiency of vehicles and high transportation cost,the production process and traditional transportation style of iron and steel works were introduced.The internal transport tasks of iron and steel works were grouped based on cluster analysis according to demand time of the transportation.An improved vehicle scheduling model of semi-trailer swap transport among loading nodes and unloading nodes in one task group was set up.The algorithm was designed to solve the vehicle routing problem with simultaneous pick-up and delivery(VRPSPD) problem based on semi-trailer swap transport.A solving program was written by MATLAB software and the method to figure out the optimal path of each grouping was obtained.The dropping and pulling transportation plan of the tractor was designed.And an example of semi-trailer swap transport in iron and steel works was given.The results indicate that semi-trailer swap transport can decrease the numbers of vehicles and drivers by 54.5% and 88.6% respectively compared with decentralized scheduling in iron and steel works,and the total distance traveled reduces by 43.5%.The semi-trailer swap transport can help the iron and steel works develop the production in intension.
基金supported by the Special Funds for the Basic Research and Development Program in the Central Non-profit Research Institutes of China (No.20603022011005)
文摘Shelf-life extension of aquatic products is of significant economical importance. To determine the potential effect of chitosan on the shelf-life of filleted tilapia, this study analyzed the bacterial community diversity in fresh and spoiled tilapia fillets stored at (4 ± 1)℃ and examined the antimicrobial activity of chitosan against relevant bacteria isolates. Results showed that Pseudomonas (20%) and Aeromonas (16%) were abundant in fresh tilapia fillets, whereas Pseudomonas (52%), Aeromonas (32%) and Staphylococcus (12%) were dominant in the spoiled samples. Chitosan showed wide-spectrum antibacterial activity against bacteria isolated from tilapia and 5.0 g L-1 chitosan was selected for application in preservation. We further determined the shelf-life of chitosan-treated, filleted tilapia stored at (4 ± 1)℃ based on microbiological, biochemical and sensory analyses. Results showed that the shelf-life of chitosan-treated, filleted tilapia was extended to 12 d, whereas that of untreated, control samples was 6 d. These indicate that chitosan, as a natural preservative, has great application potential in the shelf-life extension of tilapia fillets.
文摘Fish processing environment is very favorable for the growth of microorganisms and highlights a potential risk associated with microbial hazards. The present study investigated the growth behavior of aerobic bacteria, yeasts and molds, and bacterial pathogens or surrogate (Listeria monocytogenes and Clostridium sporogenes) on thawed and fresh catfish fillets during refrigerated storage (5°C - 7°C). Thawed and fresh fillets were respectively inoculated with L. monocytogenes and C. sporogenes, and packaged in LDPE bags. In uninoculated catfish, the populations of aerobic bacteria, and yeasts and molds increased significantly (P C. sporogenes vegetative cells on fresh catfish fillets. These results indicated that the microbiological quality of refrigerated thawed catfish would become unacceptable within 3 - 4 days. Our results also implied that environmental pathogens such as L. monocytogenes and Clostridium sp. can survive on catfish fillets for extended periods during refrigerated storage. Proper sanitation and hygienic practices are essential to control microbial hazards during handling and processing of catfish fillets.
文摘Between 1998 and 2002, 25 patients who were treated with a refrigerated or frozen allograft were evaluated. The mean patient age was 48 years. The mean lesion size was 4.5 cm2. Validated outcome instruments [Knee Society Score, Western Ontario and McMaster University Score] were used. Clinical and radiographic evaluations were performed pre-operatively and at the most recent follow-up. Histological and electron microscopic analysis was performed on grafts prior to implantation. Clinical follow-up averaged 46 months (range 24 - 60 months). The Western Ontario and McMaster University Score improved from 46 + 24 to 66 + 22 (p = 0.003). The Knee Society Score improved from 104 + 43 to 132 + 42 (p = 0.01). No correlation was noted between graft type and histological or electron microscopy scoring. Post-operative mechanical alignment was not correlated with an improvement in Western Ontario and McMaster University Score (p = 0.19) or Knee Society Score (0.27). Six patients (24%), all refrigerated allografts, were failures and underwent knee arthroplasty. Seventy-six percent of implanted frozen and refrigerated osteochondral allografts are in place 4 years after surgery. Frozen allografts appear to be surviving as well as refrigerated grafts. The use of magnetic resonance imaging may enable the evaluation of graft incorporation and articular cartilage integrity.
文摘In order to evaluate two different schemes' structural dynamic characters, dynamic response analysis of a commercial truck's main chassis frames is carried out. On the basis of correlation study between the tested and calculated modal results, the assembled frames' finite element analysis (FEA) models with sufficient precision are built up. Random response analysis in frequency domain is carried out with these FEA models, RMS values of yon Mises and main principle stresses of these two frames are obtained. It shows that the analysis resuits of the distributing tendency and concrete value ranges are coincident very well with test results. And from the results, it could be concluded that frames of scheme A endures relative better loading conditions and should be adopted as the final scheme.
基金This work was supported by the Suzhou Key industrial technology innovation project SYG202031.
文摘It is different for the liquid tank semi-trailer to keep roll stability during turning or emergency voidance,and that may cause serious accidents.Although the scholars did lots of research about the roll stability of liquid tank semi-trailer in theory by calculating and simulation,how to make an effective early warning of rollover is still unsolved in practice.The reasons include the complex driving condition and the difficulty of the vehicle parameter obtaining.The feasible method used currently is evaluating the roll stability of a liquid tank semi-trailer by the lateral acceleration or the attitude of the vehicle.Unfortunately,the lateral acceleration is more useful for sideslip rather than rollover,and the attitude is a kind of posterior way,which means it is hard to take measures to cope with the rollover accident when the attitude exceeds the safety threshold.Considering the movement of the vehicle is totally caused by the wheel force,the rollover could also be predicted by the changing of the wheel force.Therefore,in this paper,we developed a method to analyze the roll stability by the vertical wheel force.A thorough experiment environment is established,and the effectiveness of the proposed method is verified in real driving conditions.
基金supported by the Beijing Commission of Science and Technology(Grant No.Z211100004021012)Special Research Assistant Program of the Chinese Academy of Sciences(Grant No.E3VP021RX4)。
文摘We have successfully developed cryogen-free dilution refrigerators with medium cooling power that can be applied to quantum experiments. Breakthroughs have been made in some key technologies and components of heat switches and dilution units. Our prototype has been running continuously and stably for more than 100 hours below 10 m K, with a minimum temperature of 7.6 m K and a cooling power of 450 μW at 100 m K. At the same time, we have also made progress in the application of dilution refrigerators, such as quantum computing, low-temperature detector, and magnet integration. These indicators and test results indicate good prospects for application in physics, astronomy, and quantum information.
文摘Since the nuclear disaster occurred from huge earthquake in Japan 2011, Japanese energy generation system has been expected to prioritize safety and trustworthiness. To meet this requirement, distributed power supply systems are considered to be one of solutions. In this study, we aimed to conserve energy and reduce carbon dioxide emission of supermarket which installed a novel environment-friendly dispersed power. We focused the energy used by refrigerated cabinets. We built small scale model of supermarket which was equipped with dispersed power. From this scale model, the energy conservation effect of supercooling is from 10% to 25% during the summertime and intermediate time. At last, we found that when outside temperature is about 14 ℃ or more, supercooling was effective. In addition, since energy consumption of refrigerated cabinet is influenced by inside enthalpy, we controlled the inside air temperature and humidity by installing desiccant system and examined its effect.
文摘Refrigeration plays a significant role across various aspects of human life and consumes substantial amounts of electrical energy.The rapid advancement of green cooling technology presents numerous solar-powered refrigeration systems as viable alternatives to traditional refrigeration equipment.Exergy analysis is a key in identifying actual thermodynamic losses and improving the environmental and economic efficiency of refrigeration systems.In this study exergy analyze has been conducted for a solar-powered vapor compression refrigeration(SP-VCR)system in the region of Gharda颽(Southern Algeria)utilizing R1234ze(E)fluid as an eco-friendly substitute for R134a refrigerant.A MATLAB-based numerical model was developed to evaluate losses in different system components and the exergy efficiency of the SP-VCR system.Furthermore,a parametric study was carriedout to analyze the impact of various operating conditions on the system’s exergy destruction and efficiency.The obtained results revealed that,for both refrigerants,the compressor exhibited the highest exergy destruction,followed by the condenser,expansion valve,and evaporator.However,the system using R1234ze(E)demonstrated lower irreversibility compared to that using R134a refrigerant.The improvements made with R1234ze are 71.95%for the compressor,39.13%for the condenser,15.38%for the expansion valve,5%for the evaporator,and 54.76%for the overall system,which confirm the potential of R1234ze(E)as a promising alternative to R134a for cooling applications.
文摘The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.
文摘High power dissipating artificial intelligence (AI) chips require significant cooling to operate at maximum performance. Current trends regarding the integration of AI, as well as the power/cooling demands of high-performing server systems pose an immense thermal challenge for cooling. The use of refrigerants as a direct-to-chip cooling method is investigated as a potential cooling solution for cooling AI chips. Using a vapor compression refrigeration system (VCRS), the coolant temperature will be sub-ambient thereby increasing the total cooling capacity. Coupled with the implementation of a direct-to-chip boiler, using refrigerants to cool AI server systems can materialize as a potential solution for current AI server cooling demands. In this study, a comparison of 8 different refrigerants: R-134a, R-153a, R-717, R-508B, R-22, R-12, R-410a, and R-1234yf is analyzed for optimal performance. A control theoretical VCRS model is created to assess variable refrigerants under the same operational conditions. From this model, the coefficient of performance (COP), required mass flow rate of refrigerant, work required by the compressor, and overall heat transfer coefficient is determined for all 8 refrigerants. Lastly, a comprehensive analysis is provided to determine the most optimal refrigerants for cooling applications. R-717, commonly known as Ammonia, was found to have the highest COP value thus proving to be the optimal refrigerant for cooling AI chips and high-performing server applications.
文摘Water and ethanol were selected as refrigerants, 13x molecular sieve, silica gel, activated carbon and adsorbents NA and NB prepared by authors were selected as adsorbents, and the performance of adsorption working pairs in adsorption refrigeration system was studied. The adsorption isotherms of adsorbents (NA and NB) were obtained by high vacuum gravimetric method. Desorption properties of adsorbents were analyzed and compared by thermal analysis method. The performance parameters of adsorption refrigerat...
基金Project(BK2012463)supported by the Natural Science Foundation of Jiangsu Province of ChinaProject(51245010)supported by Special Funds of the National Natural Science Foundation of China+1 种基金Project(11047143)supported by the National Natural Science Foundation of ChinaProjects(12KF069,12KF036)supported by Opening Found of Laboratory of Nanjing University of Information Science and Technology,China
文摘AI coatings with different microstructures were prepared on the surface of Gd using the magnetron sputtering technique to improve its corrosion resistance. The corrosion behaviors for the pure Gd and Gd with Al coating in distilled water were studied using the mass loss and electrochemical performance. As a result, pure Gd without coating shows a certain amount of surface cracks under water flow conditions, whereas the polygonal Al coating decreases the path of the corrosive medium to body due to the existence of eroding pits structure. Compared with the polygonal structure Al coating and pure Gd, the lamellar structure of Al coating exhibits a higher electrochemical protection performance (e.g., a lower corrosion current and higher self-corrosion potential) and no occurrence of pitting corrosion. Due to an effective physical shield, the formation of the lamellar structure protected the inner Gd part from being corroded, and prolonged the duration of cathodic protection.
文摘With the entropy generation minimization (EGM) method, the thermodynamical performance optimization in a thermoelectric refrigeration system is studied. The optimization is affected by the irreversibility of heat transfer caused by finite temperature differences, the heat leak between external heat reservoirs and the internal dissipation of working fluids. EGM is taken as an objective function for the optimization. The objective function and design parameters are obtained. Optimal performance curves are presented by thermal and electronic parameters. Effects of these parameters on general and optimal performances are investigated. Results are helpful in determining optimal design conditions in real thermoelectric refrigeration systems.
基金The National Natural Science Foundation of China(No.50776016)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2008BAJ12B02)
文摘A solution cooling absorption(SCA)approach is proposed to modify the aqueous ammonia absorption refrigerat-ion cycle using the strong solution from the absorber to cool the forepart of the absorption in the cycle for reclaiming some portion of absorption heat.As a consequence of raised temperature at the inlet,the strong solution partially boils at the outlet of the solution heat exchanger,and diminishes the thermal heat consumption of the heat source.The calculation results show that the coefficient of performance(COP)of this modified cycle is about 28.3% higher than that of the traditional cycle under typical conditions;while the required heat transfer area of the total heat exchangers of the cycle is somewhat less than that of the traditional one.The capacity of refrigeration with the new absorption cycle is more than doubled in contrast to the adsorption scheme with an identical configuration.It is sufficient to supply a fishing boat the chilling capacity for preservation of fishing products with the modified cycle chiller driven by its diesel engine exhaust.
文摘An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variation curves of the cooling capacities and the refrigeration coefficients of the system running at three flight altitudes are investigated.The performance of the system is evaluated by the minimum-entropy-generation method and the performance penalty is also calculated.The power variation curves of the cooling system are obtained by an electric power experiment.The peak values of these curves are less than the maximal electric power supply of airborne equipment,proving that the use of the low-power TRS for airborne equipment is feasible.The COP,cooling capacity and entropy generation of the system are relative to the flight altitude and the current of the TRS.Through the analyses of these data,the optimal values of the COP are obtained,and the optimization measures are proposed to maximize the use of the advantages of the TRS.
文摘The problem of composition shift in zeotropic fluid circulation, which is encountered in modern air conditioning and refrigeration systems, is studied. It reveals that the composition shift phenomena is contributed by fractionation related to four mechanisms. This paper concentrates on the modeling of component fractionation in heat exchangers. Element approach is employed, and the amount of each component holdup is calculated element by element with a proper void fraction model. The circulation concentration is determined from the refrigerant differential holdup in heat exchangers. Simulations are carried out to prove the validity. The results can improve the reliability and efficiency in zeotropic refrigerant applications.
文摘This paper analyzes the possibility of applying binary nonazeotropic refrigerants in the jet refrigeration cycle. The thermodynamic cycle performance of two kinds of working pairs (R30/R142b, R30/R124) are calculated using the EOS of PR equation of state, and the results are discussed. The theoretical calculations indicate that refrigerating quality can be improved if the binary mixtures evaporate just in the low temperature region. The character of the rejecter to compress two phase medium supports the possibility of this kind of cycle.
文摘The control scheme of multifunctional refrigerant recovery and filling control system for air conditioning system is presented in this paper.The scheme of hardware circuit based on micro controller unit (MCU) MSP430 uses high-precision weighing sensor and high performance amplifier.The software program uses median average filtering algorithm.The device can recycle discarded refrigerant after purification and quantitative filling refrigerant.Meanwhile,the apparatus has the functions of recovery,filling,pressing,vaccumizing,refueling,etc.The system is proved to be of low cost,good stability and high practical value.