A study is conducted on the performances of a solar powered continuous-adsorption refrigerator considering two particular days as references cases,namely,the summer solstice(June 21st)and the autumn equinox(September ...A study is conducted on the performances of a solar powered continuous-adsorption refrigerator considering two particular days as references cases,namely,the summer solstice(June 21st)and the autumn equinox(September 21st).The cooling capacity,system performance coefficient and the daily rate of available cooling energy are assessed.The main goal is to compare the performances of a solar adsorption chiller equipped with a hot water tank(HWT)with an equivalent system relying on solar collectors with no heat storage module.The daily cooling rates for the solar refrigerator are found to be 102.4 kWh and 74.3 kWh,respectively,on June 21st and on September 21st,using a total collector’s area of 43.47 m2.The corresponding values for the adsorption chiller equipped with a hot water tank of 2 m3(and using a total collector’s area of 72.45 m2),are 127.1 kWh and 106.13 kWh,respectively.展开更多
The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther...The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.展开更多
With the entropy generation minimization (EGM) method, the thermodynamical performance optimization in a thermoelectric refrigeration system is studied. The optimization is affected by the irreversibility of heat tr...With the entropy generation minimization (EGM) method, the thermodynamical performance optimization in a thermoelectric refrigeration system is studied. The optimization is affected by the irreversibility of heat transfer caused by finite temperature differences, the heat leak between external heat reservoirs and the internal dissipation of working fluids. EGM is taken as an objective function for the optimization. The objective function and design parameters are obtained. Optimal performance curves are presented by thermal and electronic parameters. Effects of these parameters on general and optimal performances are investigated. Results are helpful in determining optimal design conditions in real thermoelectric refrigeration systems.展开更多
An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variati...An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variation curves of the cooling capacities and the refrigeration coefficients of the system running at three flight altitudes are investigated.The performance of the system is evaluated by the minimum-entropy-generation method and the performance penalty is also calculated.The power variation curves of the cooling system are obtained by an electric power experiment.The peak values of these curves are less than the maximal electric power supply of airborne equipment,proving that the use of the low-power TRS for airborne equipment is feasible.The COP,cooling capacity and entropy generation of the system are relative to the flight altitude and the current of the TRS.Through the analyses of these data,the optimal values of the COP are obtained,and the optimization measures are proposed to maximize the use of the advantages of the TRS.展开更多
Auto cascade refrigeration(ACR) cycle with phase separators is widely used in the cryogenic system. The composition of mixed refrigerant has a great effect on the performance of the system. Based on the assumption of ...Auto cascade refrigeration(ACR) cycle with phase separators is widely used in the cryogenic system. The composition of mixed refrigerant has a great effect on the performance of the system. Based on the assumption of infinite volume of phase separator, ACR system with one phase separator is simulated in this paper. The variation of refrigerant composition under different valves opening is obtained. A related experimental system is set up to verify the variation. The result shows that when the valve opening connected to the evaporator increases or the valve opening under the phase separator decreases, the low-boiling component concentration of the working mixture passing through the compressor and condenser increases, while the high-boiling component concentration decreases. Furthermore, the variations of condensation pressure and evaporation pressure under different valves opening are also observed. This paper is helpful to deepen the understanding of ACR system.展开更多
The performances of a refrigeration unit relying on compressors working in parallel have been investigated considering the influence of the compressor volumetric efficiency and isentropic efficiency on the compression...The performances of a refrigeration unit relying on compressors working in parallel have been investigated considering the influence of the compressor volumetric efficiency and isentropic efficiency on the compression ratio.Moreover,the following influential factors have been taken into account:evaporation temperature,condensation temperature and compressor suction-exhaust pressure ratio for different opening conditions of the compressor.The following quantities have been selected as the unit performance measurement indicators:refrigeration capacity,energy efficiency ratio(COP),compressor power consumption,and refrigerant flow rate.The experimental results indicate that the system refrigeration capacity and COP decrease with a decrease in evaporation temperature,increase of condensation temperature,and increase in pressure ratio.The refrigerant flow rate increases with the increase in evaporation temperature,decrease in condensing temperature and increase in pressure ratio.The compressor power consumption increases with the increase in condensing temperature and increase in pressure ratio,but is not significantly affected by the evaporation temperature.展开更多
Abstract--Vapor compression refrigeration cycle (VCC) system is a high dimensional coupling thermodynamic system for which the controller design is a great challenge. In this paper, a model predictive control based ...Abstract--Vapor compression refrigeration cycle (VCC) system is a high dimensional coupling thermodynamic system for which the controller design is a great challenge. In this paper, a model predictive control based energy efficient control strategy which aims at maximizing the system efficiency is proposed. Firstly, according to the mass and energy conservation law, an analysis on the nonlinear relationship between superheat and cooling load is carried out, which can produce the maximal effect on the system performance. Then a model predictive control (MPC) based controller is developed for tracking the calculated setting curve of superheat degree and pressure difference based on model identified from data which can be obtained from an experimental rig. The proposed control strategy maximizes the coefficient of performance (COP) which depends on operating conditions, in the meantime, it meets the changing demands of cooling capacity. The effectiveness of the control performance is validated on the experimental rig. Index Terms--Cooling load, model predictive control (MPC), superheat, vapor compression refrigeration cycle (VCC).展开更多
Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due ...Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due to lack of systematic design methods for multistage refrigeration cycles, conventional approaches to determine optimal cycle are largely trial-and-error. In this paper a novel mixed integer non-linear programming(MINLP)model is introduced to select optimal synthesis of refrigeration systems to reduce both operating and capital costs of an LNG plant. Better conceptual understanding of design improvement is illustrated on composite curve(CC) and exergetic grand composite curve(EGCC) of pinch analysis diagrams. In this method a superstructure representation of complex refrigeration system is developed to select and optimize key decision variables in refrigeration cycles(i.e. partition temperature, compression configuration, refrigeration features, refrigerant flow rate and economic trade-off). Based on this method a program(LNG-Pro) is developed which integrates VBA,Refprop and Excel MINLP Solver to automate the methodology. Design procedure is applied on a sample LNG plant to illustrate advantages of using this method which shows a 3.3% reduction in total shaft work consumption.展开更多
In order to create low temperature environment for the valve testing,a new type of semiconductor refrigeration box based on semiconductor refrigeration chip and programmable logic controller(PLC)control system is desi...In order to create low temperature environment for the valve testing,a new type of semiconductor refrigeration box based on semiconductor refrigeration chip and programmable logic controller(PLC)control system is designed.The power of the semiconductor refrigeration chip is determined by calculating the heat dissipation characteristics of the semiconductor refrigeration box.Combining natural convection heat dissipation with forced air cooling,the heat sink of semiconductor refrigeration chip is designed.In the control strategy,switch control is combined with an intelligent control strategy.Adaptive single neuron optimization algorithm based on quadratic optimization is adopted to adjust and optimize the parameters of the proportional-integral-derivative(PID)controllers in real time.Taking into account the limited hardware capabilities of the PLC,the Jacobian information in parameter adjustment is redesigned into a simplified form of identification.The actual test results of refrigeration box show good control performance.展开更多
The optimal design of a compression refrigeration system(CRS) with multiple temperature levels is very important to chemical process industries and also represents considerable challenges in process systems engineerin...The optimal design of a compression refrigeration system(CRS) with multiple temperature levels is very important to chemical process industries and also represents considerable challenges in process systems engineering. In this paper, a general methodology for the optimal synthesis of the CRS, which simultaneously integrates CRS and Heat Exchanger Networks(HEN) to minimize the total compressor shaft work consumption based on an MINLP model, has been proposed. The major contribution of this method is in addressing the optimal design of refrigeration cycle with variable refrigeration temperature levels. The method can be used to make major decisions in the CRS design, such as the number of levels, temperature levels, and heat transfer duties. The performance of the developed methodology has been illustrated with a case study of an ethylene CRS in an industrial ethylene plant, and the optimal solution has been examined by rigorous simulations in Aspen Plus to verify its feasibility and consistency.展开更多
Refrigeration system holds an important role in process industries. The optimal synthesis cannot only reduce the energy consumption, but also save the production costs. In this study, a general methodology is develope...Refrigeration system holds an important role in process industries. The optimal synthesis cannot only reduce the energy consumption, but also save the production costs. In this study, a general methodology is developed for the optimal design of refrigeration cycle and heat exchanger network(HEN) simultaneously. Taking the heat integration between the external heat sources/sinks and the refrigeration cycle into consideration, a superstructure with sub-coolers is developed. Through defining logical variables that indicate the relative temperature positions of refrigerant streams after sub-coolers, the synthesis is formulated as a Generalized Disjunctive Programming(GDP) problem based on LP transshipment model, with the target of minimizing the total compressor shaft work in the refrigeration system. The GDP model is then reformulated as a Mixed Integer Nonlinear Programming(MINLP) problem with the aid of binary variables and Big-M Constraint Method. The efficacy of the process synthesis model is demonstrated by a case study of ethylene refrigeration system. The result shows that the optimization can significantly reduce the exergy loss as well as the total compression shaft work.展开更多
Different from the traditional hydraulic oil cooling method,a new type of constant temperature oil tank cooling system based on semiconductor refrigeration technology is designed. This paper studies the principle of s...Different from the traditional hydraulic oil cooling method,a new type of constant temperature oil tank cooling system based on semiconductor refrigeration technology is designed. This paper studies the principle of semiconductor refrigeration and establishes a heat transfer model. Semiconductor cooler on piping refrigeration is simulated,and influence of the parameters on the outlet temperature,such as pipe pressure difference of inlet and outlet,pipe length,pipe radius,are gotten,and then hydraulic tank semiconductor refrigeration system is proposed. The semiconductor refrigeration system can control temperature at 37 ± 1°C.展开更多
Solar energy is replacing more and more traditional sources of energy because of the fact that it’s also fighting about global warming. This study is based on exergy analysis of a double-effect series flow absorption...Solar energy is replacing more and more traditional sources of energy because of the fact that it’s also fighting about global warming. This study is based on exergy analysis of a double-effect series flow absorption refrigeration system powered by solar energy in Ngaoundere. The simulation is done on the basis of a half hourly analysis for the first time, from 6.30 AM to 6.30 PM, using water-lithium bromide as working pair. The main parameters for the performance of an absorption cycle, which are the COP and the ECOP, have been analyzed and the results show that this two parameters increase while increasing the temperature of the main generator. The exergy loss of each component of the system and the total exergy loss of the system have been analyzed and their effectiveness calculated, using the first and second law of thermodynamics. The highest exergy loss occurs in the main generator GI and in the absorber, making these components more important in an absorption cycle. This analysis is based on a mathematical model using FORTRAN?language. The results obtained may be useful for the optimization of solar absorption refrigeration systems.展开更多
[Objective] The study aimed to discuss the factors influencing the application of shaping biomass energy in the NHJHe absorption re- frigeration system. [ Method] In the NHJHe absorption refrigeration system, the ther...[Objective] The study aimed to discuss the factors influencing the application of shaping biomass energy in the NHJHe absorption re- frigeration system. [ Method] In the NHJHe absorption refrigeration system, the thermodynamic analysis of semi-gasification furnace based on sec- tional combustion technology and absorption refrigeration system was performed. [ Result] Biomass could burn cleanly and efficiently in the semi- gasification furnace, which can reduce the environmental pollution caused by the combustion of coal and other fossil fuels. The heating power of the furnace for the absorption refrigeration system could not be too high, so biomass energy and other low-grade energy can be used as heat sources, which opens up a new way for the utilization of biomass energy. [ Conclusion] Biomass energy was applied successfully in the absorption refrigera- tion system.展开更多
Simultaneous optimization of refrigeration system(RS)and its heat exchanger network(HEN)leads to a large-scale non-convex mixed-integer non-linear programming(MINLP)problem.Conventionally,researchers usually adopted s...Simultaneous optimization of refrigeration system(RS)and its heat exchanger network(HEN)leads to a large-scale non-convex mixed-integer non-linear programming(MINLP)problem.Conventionally,researchers usually adopted simplifications to confine problem scale from being too large at the cost of reducing solution space.This study established an optimization framework for the simultaneous optimization of RS and HEN.Firstly,A more comprehensive and compact model was developed to guarantee a relatively complete solution space while reducing model scale as well as its solving difficulty.In this model,a tandem arrangement of connecting sub-coolers and expansion valves was considered in the superstructure;and the pressure/temperature levels were optimized as continuous variables.On this basis,we proposed a"two-step transformation method"to equivalently transform the cross-level structure into a no n-cross-level structu re,and the de-redundant superstructu re was established with ensuring comprehensiveness and rigor.Furthermore,the MINLP model was developed and solved by Particle Swarm Optimization algorithm.Finally,our methodology was validated to get better optimal results with less CPU time in two case studies,an ethylene RS in an existing plant and a reported propylene RS.展开更多
By means of the Second Law of Thermodynamics,thispaper gives out the entropy analysis method for vapor-comperession refrigeration system.The thermal irrevers-ibility of the system charged with R12 and its hopeful al-t...By means of the Second Law of Thermodynamics,thispaper gives out the entropy analysis method for vapor-comperession refrigeration system.The thermal irrevers-ibility of the system charged with R12 and its hopeful al-ternative refrlgerant R134a have been studied respective-ly.On the basis of all the research results of this paper,the measure used to save energy for vapor-compressionrefrigeration system has been put out.展开更多
The airborne high power electrical equipments have been widely used in modern aircrafts , which consequently causes the dramatic increase of heating load up to dozens of kilowatts.Accordingly , vapor-compression refri...The airborne high power electrical equipments have been widely used in modern aircrafts , which consequently causes the dramatic increase of heating load up to dozens of kilowatts.Accordingly , vapor-compression refrigeration system ( VCRS ) with lower engine bleed air and larger refrigeration capacity has been paid much attention in recent years.Therefore , based on the analysis of the characteristics of VCRS , an experiment system of VCRS using R134ais set up to simulate operation performances.The influences of different parameters including evaporation pressure , condensing pressure , refrigerant mass flow rate and compressor rotation speed are also investigated.The impacts of different parameters on the system performance are various.This work can help to establish the specific control law under different work conditions.展开更多
d-Al-Dy system materials were prepared by the technique of powder sintering. Twolayers gradient function materials with compositions of (Gd_0.9Dy_0.1)_3Al_2 and Gd_3Al_2 respectively were studied. The results show tha...d-Al-Dy system materials were prepared by the technique of powder sintering. Twolayers gradient function materials with compositions of (Gd_0.9Dy_0.1)_3Al_2 and Gd_3Al_2 respectively were studied. The results show that the Curie temperature (Tc) of the monolayer material decreases with the increment of Dy content. The Tc values of the twolayer gradient function material agree well with the layer numbers and corresponding to Dy content. For the Tc gradiently changed twolayers Gd-Al-Dy system material, its ΔSm changes smoothly with temperature. Therefore, the magnetic refrigeration is improved.展开更多
An open loop cycle carbon dioxide(CO2)refrigeration system is established,and the cooling performances of high-pressure CO2 under different storage conditions(25℃,30℃,and 35℃)are investigated.Moreover,the experimen...An open loop cycle carbon dioxide(CO2)refrigeration system is established,and the cooling performances of high-pressure CO2 under different storage conditions(25℃,30℃,and 35℃)are investigated.Moreover,the experimental mass flow rates of CO2 are compared with the theoretical values at different conditions and refrigeration capacities.The results indicate that the storage condition of CO2 has a significant impact on the refrigeration performance,and the mass flow rate of CO2 increases with the increasing storage temperature in a given refrigeration capacity.展开更多
The falling film of an ionic liquid([EMIM][DMP]+H_(2)O)and its effect on a refrigeration system are numerically simulated in the framework of a Volume of Fluid(VOF)method(as available in the ANSYS Fluent computational...The falling film of an ionic liquid([EMIM][DMP]+H_(2)O)and its effect on a refrigeration system are numerically simulated in the framework of a Volume of Fluid(VOF)method(as available in the ANSYS Fluent computational platform).The properties of the liquid film and the wall shear stress(WSS)are compared with those obtained for a potassium bromide solution.Different working conditions are considered.It is noted that the ionic liquid demonstrates a better absorption capability,with a coefficient of performance(COP)of 0.55.It is proved that the[EMIM][DMP]+H_(2)O ionic liquid working substance is superior to the potassium bromide solution in terms of heat and mass transfer.展开更多
基金supported by Campus France in the frame of the PHC-Maghreb 19Mag29 Project.We would like to thank also our Ministries and research units。
文摘A study is conducted on the performances of a solar powered continuous-adsorption refrigerator considering two particular days as references cases,namely,the summer solstice(June 21st)and the autumn equinox(September 21st).The cooling capacity,system performance coefficient and the daily rate of available cooling energy are assessed.The main goal is to compare the performances of a solar adsorption chiller equipped with a hot water tank(HWT)with an equivalent system relying on solar collectors with no heat storage module.The daily cooling rates for the solar refrigerator are found to be 102.4 kWh and 74.3 kWh,respectively,on June 21st and on September 21st,using a total collector’s area of 43.47 m2.The corresponding values for the adsorption chiller equipped with a hot water tank of 2 m3(and using a total collector’s area of 72.45 m2),are 127.1 kWh and 106.13 kWh,respectively.
文摘The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.
文摘With the entropy generation minimization (EGM) method, the thermodynamical performance optimization in a thermoelectric refrigeration system is studied. The optimization is affected by the irreversibility of heat transfer caused by finite temperature differences, the heat leak between external heat reservoirs and the internal dissipation of working fluids. EGM is taken as an objective function for the optimization. The objective function and design parameters are obtained. Optimal performance curves are presented by thermal and electronic parameters. Effects of these parameters on general and optimal performances are investigated. Results are helpful in determining optimal design conditions in real thermoelectric refrigeration systems.
文摘An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variation curves of the cooling capacities and the refrigeration coefficients of the system running at three flight altitudes are investigated.The performance of the system is evaluated by the minimum-entropy-generation method and the performance penalty is also calculated.The power variation curves of the cooling system are obtained by an electric power experiment.The peak values of these curves are less than the maximal electric power supply of airborne equipment,proving that the use of the low-power TRS for airborne equipment is feasible.The COP,cooling capacity and entropy generation of the system are relative to the flight altitude and the current of the TRS.Through the analyses of these data,the optimal values of the COP are obtained,and the optimization measures are proposed to maximize the use of the advantages of the TRS.
基金Supported by the China Postdoctoral Science Foundation(2014M552195)the State Key Laboratory Foundation of Subtropical Building,South China University of Technology(2013ZC13)the Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization,South China University of Technology(2013A061401005)
文摘Auto cascade refrigeration(ACR) cycle with phase separators is widely used in the cryogenic system. The composition of mixed refrigerant has a great effect on the performance of the system. Based on the assumption of infinite volume of phase separator, ACR system with one phase separator is simulated in this paper. The variation of refrigerant composition under different valves opening is obtained. A related experimental system is set up to verify the variation. The result shows that when the valve opening connected to the evaporator increases or the valve opening under the phase separator decreases, the low-boiling component concentration of the working mixture passing through the compressor and condenser increases, while the high-boiling component concentration decreases. Furthermore, the variations of condensation pressure and evaporation pressure under different valves opening are also observed. This paper is helpful to deepen the understanding of ACR system.
基金supported by the National Natural Science Foundation of China(No.41877251)the Key project of Natural Science Foundation of Tianjin City(No.6JCZDJC39000).
文摘The performances of a refrigeration unit relying on compressors working in parallel have been investigated considering the influence of the compressor volumetric efficiency and isentropic efficiency on the compression ratio.Moreover,the following influential factors have been taken into account:evaporation temperature,condensation temperature and compressor suction-exhaust pressure ratio for different opening conditions of the compressor.The following quantities have been selected as the unit performance measurement indicators:refrigeration capacity,energy efficiency ratio(COP),compressor power consumption,and refrigerant flow rate.The experimental results indicate that the system refrigeration capacity and COP decrease with a decrease in evaporation temperature,increase of condensation temperature,and increase in pressure ratio.The refrigerant flow rate increases with the increase in evaporation temperature,decrease in condensing temperature and increase in pressure ratio.The compressor power consumption increases with the increase in condensing temperature and increase in pressure ratio,but is not significantly affected by the evaporation temperature.
基金supported by the National Natural Science Foundation of China(61233004,61221003,61374109,61473184,61703223,61703238)the National Basic Research Program of China(973 Program)(2013CB035500)+1 种基金Shandong Provincial Natural Science Foundation of China(ZR2017BF014,ZR2017MF017)the National Research Foundation of Singapore(NRF-2011,NRF-CRP001-090)
文摘Abstract--Vapor compression refrigeration cycle (VCC) system is a high dimensional coupling thermodynamic system for which the controller design is a great challenge. In this paper, a model predictive control based energy efficient control strategy which aims at maximizing the system efficiency is proposed. Firstly, according to the mass and energy conservation law, an analysis on the nonlinear relationship between superheat and cooling load is carried out, which can produce the maximal effect on the system performance. Then a model predictive control (MPC) based controller is developed for tracking the calculated setting curve of superheat degree and pressure difference based on model identified from data which can be obtained from an experimental rig. The proposed control strategy maximizes the coefficient of performance (COP) which depends on operating conditions, in the meantime, it meets the changing demands of cooling capacity. The effectiveness of the control performance is validated on the experimental rig. Index Terms--Cooling load, model predictive control (MPC), superheat, vapor compression refrigeration cycle (VCC).
文摘Liquefied natural gas(LNG) is the most economical way of transporting natural gas(NG) over long distances. Liquefaction of NG using vapor compression refrigeration system requires high operating and capital cost. Due to lack of systematic design methods for multistage refrigeration cycles, conventional approaches to determine optimal cycle are largely trial-and-error. In this paper a novel mixed integer non-linear programming(MINLP)model is introduced to select optimal synthesis of refrigeration systems to reduce both operating and capital costs of an LNG plant. Better conceptual understanding of design improvement is illustrated on composite curve(CC) and exergetic grand composite curve(EGCC) of pinch analysis diagrams. In this method a superstructure representation of complex refrigeration system is developed to select and optimize key decision variables in refrigeration cycles(i.e. partition temperature, compression configuration, refrigeration features, refrigerant flow rate and economic trade-off). Based on this method a program(LNG-Pro) is developed which integrates VBA,Refprop and Excel MINLP Solver to automate the methodology. Design procedure is applied on a sample LNG plant to illustrate advantages of using this method which shows a 3.3% reduction in total shaft work consumption.
文摘In order to create low temperature environment for the valve testing,a new type of semiconductor refrigeration box based on semiconductor refrigeration chip and programmable logic controller(PLC)control system is designed.The power of the semiconductor refrigeration chip is determined by calculating the heat dissipation characteristics of the semiconductor refrigeration box.Combining natural convection heat dissipation with forced air cooling,the heat sink of semiconductor refrigeration chip is designed.In the control strategy,switch control is combined with an intelligent control strategy.Adaptive single neuron optimization algorithm based on quadratic optimization is adopted to adjust and optimize the parameters of the proportional-integral-derivative(PID)controllers in real time.Taking into account the limited hardware capabilities of the PLC,the Jacobian information in parameter adjustment is redesigned into a simplified form of identification.The actual test results of refrigeration box show good control performance.
基金Supported by the National Natural Science Foundation of China(21676183)
文摘The optimal design of a compression refrigeration system(CRS) with multiple temperature levels is very important to chemical process industries and also represents considerable challenges in process systems engineering. In this paper, a general methodology for the optimal synthesis of the CRS, which simultaneously integrates CRS and Heat Exchanger Networks(HEN) to minimize the total compressor shaft work consumption based on an MINLP model, has been proposed. The major contribution of this method is in addressing the optimal design of refrigeration cycle with variable refrigeration temperature levels. The method can be used to make major decisions in the CRS design, such as the number of levels, temperature levels, and heat transfer duties. The performance of the developed methodology has been illustrated with a case study of an ethylene CRS in an industrial ethylene plant, and the optimal solution has been examined by rigorous simulations in Aspen Plus to verify its feasibility and consistency.
基金Supported by the National Natural Science Foundation of China(21676183)
文摘Refrigeration system holds an important role in process industries. The optimal synthesis cannot only reduce the energy consumption, but also save the production costs. In this study, a general methodology is developed for the optimal design of refrigeration cycle and heat exchanger network(HEN) simultaneously. Taking the heat integration between the external heat sources/sinks and the refrigeration cycle into consideration, a superstructure with sub-coolers is developed. Through defining logical variables that indicate the relative temperature positions of refrigerant streams after sub-coolers, the synthesis is formulated as a Generalized Disjunctive Programming(GDP) problem based on LP transshipment model, with the target of minimizing the total compressor shaft work in the refrigeration system. The GDP model is then reformulated as a Mixed Integer Nonlinear Programming(MINLP) problem with the aid of binary variables and Big-M Constraint Method. The efficacy of the process synthesis model is demonstrated by a case study of ethylene refrigeration system. The result shows that the optimization can significantly reduce the exergy loss as well as the total compression shaft work.
基金Supported by the National Natural Science Foundation of China(No.51175448,51405424)
文摘Different from the traditional hydraulic oil cooling method,a new type of constant temperature oil tank cooling system based on semiconductor refrigeration technology is designed. This paper studies the principle of semiconductor refrigeration and establishes a heat transfer model. Semiconductor cooler on piping refrigeration is simulated,and influence of the parameters on the outlet temperature,such as pipe pressure difference of inlet and outlet,pipe length,pipe radius,are gotten,and then hydraulic tank semiconductor refrigeration system is proposed. The semiconductor refrigeration system can control temperature at 37 ± 1°C.
文摘Solar energy is replacing more and more traditional sources of energy because of the fact that it’s also fighting about global warming. This study is based on exergy analysis of a double-effect series flow absorption refrigeration system powered by solar energy in Ngaoundere. The simulation is done on the basis of a half hourly analysis for the first time, from 6.30 AM to 6.30 PM, using water-lithium bromide as working pair. The main parameters for the performance of an absorption cycle, which are the COP and the ECOP, have been analyzed and the results show that this two parameters increase while increasing the temperature of the main generator. The exergy loss of each component of the system and the total exergy loss of the system have been analyzed and their effectiveness calculated, using the first and second law of thermodynamics. The highest exergy loss occurs in the main generator GI and in the absorber, making these components more important in an absorption cycle. This analysis is based on a mathematical model using FORTRAN?language. The results obtained may be useful for the optimization of solar absorption refrigeration systems.
基金Supported by Scientific and Technological Project of Educational Commission of Henan Province,China(2009B480006)
文摘[Objective] The study aimed to discuss the factors influencing the application of shaping biomass energy in the NHJHe absorption re- frigeration system. [ Method] In the NHJHe absorption refrigeration system, the thermodynamic analysis of semi-gasification furnace based on sec- tional combustion technology and absorption refrigeration system was performed. [ Result] Biomass could burn cleanly and efficiently in the semi- gasification furnace, which can reduce the environmental pollution caused by the combustion of coal and other fossil fuels. The heating power of the furnace for the absorption refrigeration system could not be too high, so biomass energy and other low-grade energy can be used as heat sources, which opens up a new way for the utilization of biomass energy. [ Conclusion] Biomass energy was applied successfully in the absorption refrigera- tion system.
基金supported by the National Natural Science Foundation of China(21978203)the Natural Science Foundation of Tianjin(19JCYBJC20300)。
文摘Simultaneous optimization of refrigeration system(RS)and its heat exchanger network(HEN)leads to a large-scale non-convex mixed-integer non-linear programming(MINLP)problem.Conventionally,researchers usually adopted simplifications to confine problem scale from being too large at the cost of reducing solution space.This study established an optimization framework for the simultaneous optimization of RS and HEN.Firstly,A more comprehensive and compact model was developed to guarantee a relatively complete solution space while reducing model scale as well as its solving difficulty.In this model,a tandem arrangement of connecting sub-coolers and expansion valves was considered in the superstructure;and the pressure/temperature levels were optimized as continuous variables.On this basis,we proposed a"two-step transformation method"to equivalently transform the cross-level structure into a no n-cross-level structu re,and the de-redundant superstructu re was established with ensuring comprehensiveness and rigor.Furthermore,the MINLP model was developed and solved by Particle Swarm Optimization algorithm.Finally,our methodology was validated to get better optimal results with less CPU time in two case studies,an ethylene RS in an existing plant and a reported propylene RS.
文摘By means of the Second Law of Thermodynamics,thispaper gives out the entropy analysis method for vapor-comperession refrigeration system.The thermal irrevers-ibility of the system charged with R12 and its hopeful al-ternative refrlgerant R134a have been studied respective-ly.On the basis of all the research results of this paper,the measure used to save energy for vapor-compressionrefrigeration system has been put out.
文摘The airborne high power electrical equipments have been widely used in modern aircrafts , which consequently causes the dramatic increase of heating load up to dozens of kilowatts.Accordingly , vapor-compression refrigeration system ( VCRS ) with lower engine bleed air and larger refrigeration capacity has been paid much attention in recent years.Therefore , based on the analysis of the characteristics of VCRS , an experiment system of VCRS using R134ais set up to simulate operation performances.The influences of different parameters including evaporation pressure , condensing pressure , refrigerant mass flow rate and compressor rotation speed are also investigated.The impacts of different parameters on the system performance are various.This work can help to establish the specific control law under different work conditions.
文摘d-Al-Dy system materials were prepared by the technique of powder sintering. Twolayers gradient function materials with compositions of (Gd_0.9Dy_0.1)_3Al_2 and Gd_3Al_2 respectively were studied. The results show that the Curie temperature (Tc) of the monolayer material decreases with the increment of Dy content. The Tc values of the twolayer gradient function material agree well with the layer numbers and corresponding to Dy content. For the Tc gradiently changed twolayers Gd-Al-Dy system material, its ΔSm changes smoothly with temperature. Therefore, the magnetic refrigeration is improved.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘An open loop cycle carbon dioxide(CO2)refrigeration system is established,and the cooling performances of high-pressure CO2 under different storage conditions(25℃,30℃,and 35℃)are investigated.Moreover,the experimental mass flow rates of CO2 are compared with the theoretical values at different conditions and refrigeration capacities.The results indicate that the storage condition of CO2 has a significant impact on the refrigeration performance,and the mass flow rate of CO2 increases with the increasing storage temperature in a given refrigeration capacity.
文摘The falling film of an ionic liquid([EMIM][DMP]+H_(2)O)and its effect on a refrigeration system are numerically simulated in the framework of a Volume of Fluid(VOF)method(as available in the ANSYS Fluent computational platform).The properties of the liquid film and the wall shear stress(WSS)are compared with those obtained for a potassium bromide solution.Different working conditions are considered.It is noted that the ionic liquid demonstrates a better absorption capability,with a coefficient of performance(COP)of 0.55.It is proved that the[EMIM][DMP]+H_(2)O ionic liquid working substance is superior to the potassium bromide solution in terms of heat and mass transfer.