The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther...The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.展开更多
By means of the Second Law of Thermodynamics,thispaper gives out the entropy analysis method for vapor-comperession refrigeration system.The thermal irrevers-ibility of the system charged with R12 and its hopeful al-t...By means of the Second Law of Thermodynamics,thispaper gives out the entropy analysis method for vapor-comperession refrigeration system.The thermal irrevers-ibility of the system charged with R12 and its hopeful al-ternative refrlgerant R134a have been studied respective-ly.On the basis of all the research results of this paper,the measure used to save energy for vapor-compressionrefrigeration system has been put out.展开更多
Compression-absorption cascade refrigeration cycle(CACRC)combined with vapor-compression refrigeration and absorption refrigeration cycle attracts great interest due to the less electricity consumption and utilization...Compression-absorption cascade refrigeration cycle(CACRC)combined with vapor-compression refrigeration and absorption refrigeration cycle attracts great interest due to the less electricity consumption and utilization waste heat.In this work,the performance of the CACRC system was investigated using 16 refrigerants in the vapor compression section and H_(2)O-LiBr in the absorption refrigeration section.Energy,exergy and economic analysis of the CACRC system were carried out and the results were compared.Results show that RE170/H_(2)O-LiBr presents the better coefficient of performance and exergy efficiency amongst all the studied fluids.In addition,the economic optimization,multi-objective optimization,and thermodynamic optimization of the CACRC system based on the RE170/H_(2)O-LiBr working fluid were also carried out.展开更多
A refrigerant mixture TJR02 was developed and the comparison experiment was performed on a singlestage vapor compression refrigeration system originally designed for R22.Experimental results show that TJR02 can be dir...A refrigerant mixture TJR02 was developed and the comparison experiment was performed on a singlestage vapor compression refrigeration system originally designed for R22.Experimental results show that TJR02 can be directly used in the system without modifying the original system or changing lubricant.By replacing R22 with TJR02,cooling rate gets faster and at least 20% of energy is saved.The actual detection in the standard test-bed verifies the experimental results and indicates that the adoption of TJR02 leads to greater efficiency and wider application.And the lower the refrigeratory temperature is,the more obvious the energy saving effects will be.展开更多
Considering the issues of energy saving and environment protection,the performance of refrigeration systems requires to be improved.In recent years,nano-fluids have attracted greatly attention from the researchers due...Considering the issues of energy saving and environment protection,the performance of refrigeration systems requires to be improved.In recent years,nano-fluids have attracted greatly attention from the researchers due to their outstanding thermal characteristics.In this work,the published investigations on the preparation and characterization of nano-fluids have been discussed at first.Furthermore,the key thermo-physical properties of nano-fluids,such as thermal conductivity,viscosity,specific heat and density have been summarized.Finally,the performance enhancements in different types of refrigeration systems by using nano-fluids have been reviewed.It is concluded that nano-fluids as refrigerant,lubricant or secondary fluid have wide potential application in refrigeration systems.展开更多
In this paper,the entrainment ratio,pump work,heat loads of heat exchangers and COPthermal were theoretically evaluated for a solar-driven ejector-vapor compression hybrid refrigeration system with R1233zd(E)and R1336...In this paper,the entrainment ratio,pump work,heat loads of heat exchangers and COPthermal were theoretically evaluated for a solar-driven ejector-vapor compression hybrid refrigeration system with R1233zd(E)and R1336mzz(Z)as the working fluids.The evaluation of the utilization potentials of R1233zd(E)and R1336mzz(Z)was presented by comparing the system performance with that of R245fa,a commonly used refrigerant in the ejector system.The results indicated that the systems with R1233zd(E)and R1336mzz(Z)had a higher entrainment ratio and lower pump work.The pump works when using R1233zd(E)and R1336mzz(Z)can be up to 14.59%and 38.05%lower than those of R245fa,respectively.Meanwhile,the system showed the highest COPthermal utilizing R1233zd(E)followed by that of R245fa,with the R1336mzz(Z)system having the lowest value.The differences between R1233zd(E)and R1336mzz(Z)systems,R1233zd(E)and R245fa systems were 4.33%and 2.0%,respectively.This paper was expected to provide a good reference for the utilizing prospect of R1233zd(E)and R1336mzz(Z)in ejector refrigeration systems.展开更多
In this paper,the operation perfonnance of three novel kinds of cogeneration systems under design and off-design condition was investigated.The systems are MGT(micro gas turbine)+ORC(organic Rankine cycle)for electric...In this paper,the operation perfonnance of three novel kinds of cogeneration systems under design and off-design condition was investigated.The systems are MGT(micro gas turbine)+ORC(organic Rankine cycle)for electricity demand,MGT+ERC(ejector refrigeration cycle)for electricity and cooling demand,and MGT+ORC+ERC for electricity and cooling demand.The effect of 5 different working fluids on cogeneration systems was studied.The results show that under the design condition,when using R600 in the bottoming cycle,the MGT+ORC system has the lowest total output of 117.1 kW with a thermal efficiency of 0.334,and the MGT+ERC system has the largest total output of 142.6 kW with a thermal efficiency of 0.408.For the MGT+ORC+ERC system,the total output is between the other two systems,which is 129.3 kW with a thermal efficiency of 0.370.For the effect of different working fluids,R123 is the most suitable working fluid for MGT+ORC with the maximum electricity output power and R600 is the most suitable working fluid for MGT+ERC with the maximum cooling capacity,while both R600 and R123 can make MGT+ORC+ERC achieve a good comprehensive performance of refrigeration and electricity.The thermal efficiency of three cogeneration systems can be effectively improved under oredesign condition because the bottoming cycle can compensate for the power decrease of MGT.The results obtained in this paper can provide a reference for the design and operation of the cogeneration system for distributed energy systems(DES).展开更多
In this study,the potential implementation of three different low-GWP refrigerants(R32,R452B,and R454B)as replacements for R410A was investigated.The study was performed using a simulation tool developed by the author...In this study,the potential implementation of three different low-GWP refrigerants(R32,R452B,and R454B)as replacements for R410A was investigated.The study was performed using a simulation tool developed by the authors called RACHP-Lab,which is a vapor compression system simulation tool developed based on physics-based simulation for typical mini-split air conditioners.The simulation study was carried out and validated using experimental performance data of 10 different air conditioning units available in the Egyptian market.The units included fixed-speed or variable-speed compressors and operated in cooling or heating modes.Drop-in replace-ment with the new refrigerants was carried out.For R32,the capacity increased between 4.9%and 13%for cooling cases,and 6.3%and 12.4%for heating cases.However,COP did not improve in all cases.For R452B and R454B with direct replacement,the capacity nearly remained the same,with an increase of COP between 1.6%and 8.0%.Soft optimization was also conducted on cooling cases where compressor suction superheat,condenser subcooling,and compressor volumetric speed were optimized to maximize COP while maintaining the original capacity of R410A.R32 showed an improvement of COP over R410A between 4.6%and 15.5%,while for R452B and R454B between 2.2%and 13.2%.展开更多
The ionic liquid, 1-butyl-3-methylimidazolium dibutylphosphate ([BMIM][DBP]) was prepared and the vapor pressures of three set of binary solutions H2O(1)/CH3OH(1)/C2H5OH(1) + [BMIM][DBP](2) were measured at different ...The ionic liquid, 1-butyl-3-methylimidazolium dibutylphosphate ([BMIM][DBP]) was prepared and the vapor pressures of three set of binary solutions H2O(1)/CH3OH(1)/C2H5OH(1) + [BMIM][DBP](2) were measured at different temperature and in the ILs mole fraction range from 0.1 to 0.6 with a static equilibrium apparatus. The measured vapor pressures were correlated with Non-Random Two Liquid (NRTL) activity coefficient model and the average relative deviations (ARD) between experimental and correlated vapor pressures for these binary solutions were 3.19%, 2.42% and 2.95%, respectively. Then, the vapor pressures of two set of ternary solutions H2O(1) + CH3OH(2)/C2H5OH(2) + [BMIM][DBP](3) were measured with an inclined boiling apparatus and further predicted with NRTL activity coefficient model based on the binary interaction parameters coming from fitting the vapor pressures of the binary solutions. The results indicated that the ternary solutions containing [BMIM][DBP] were shown a strong negative deviation from Raoult's Law when the mole fraction of [BMIM][DBP] was larger than 0.2, which meant that ternary solutions could absorb the refrigerant vapors at the same or below solution temperature. Meanwhile, the average relative deviations between experimental and predicted vapor pressures for ternary solutions were 2.92% and 3.06%, respectively. Consequently, the NRTL active coefficient model used for non-electrolyte solutions was still valid for predicting vapor-liquid equilibrium of binary or ternary solutions containing ILs.展开更多
In this paper, a new ternary non-azeotropic mixture of HFC-161/125/143a (0.15/0.45/0.40 in mass fraction), as a promising mixed refrigerant to R404A, is presented. The ozone depletion potential (ODP) of the new re...In this paper, a new ternary non-azeotropic mixture of HFC-161/125/143a (0.15/0.45/0.40 in mass fraction), as a promising mixed refrigerant to R404A, is presented. The ozone depletion potential (ODP) of the new refrigerant is zero and its basic thermodynamic properties are similar to those of R404A, but its global warming potential (GWP) is much smaller than those of R507A and R404A. Meanwhile, theoretical calculations show that, under the working condition 1 (the average evaporation temperature: -23℃, the average condensing temperature: 43℃, the superheat temperature: 28℃, the subcooling temperature: 5 ℃), the volumetric refrigerating effect and specific refrigerating effect of the new mixture are 2.33% and 15.48% higher, re- spectively, than those of R404A. The coefficient of performance (COP) of the new mixture is 5.19% higher than that of R404A and the pressure ratio of the new mixture is 0.82% lower than that of R404A. Equally, under the working condition II (the average evaporation temperature: -40℃, the average condensing temperature: 35℃, the superheating temperature: 30 ~C, the subcooling temperature: 5℃), the volumetric refrigerating effect and specific refrigerating effect of the new mixture are 2.24% and 20.58% higher, respectively, than those of R404A. The COP of the new mixture is 4.60% higher than that of R404A and the pressure ratio of the new mixture is similar to that of R404A. The performances of the new mixture and R404A are compared in a vapor compressor refrigeration apparatus originally designed for R404A under several working conditions (condensing temperatures: 35-45℃, evaporation temperatures: -40--20℃). Experimental results show that the new mixture can obtain a higher COP, by 6.3% to 12.1%, and a lower pressure ratio, by 1.8% to 6.6%, compared to R404A; although the discharge temperature of the new mixture is slightly higher than that of R404A. The advantages of the new mixture will be further verified in the actual system.展开更多
To solve the problems of single heat source heat pump systems in severe cold regions,a dual-source hybrid heat pump unit(DSHHPU)is proposed.The mathematical models of the DSHHPU when charging R134a or its alternative ...To solve the problems of single heat source heat pump systems in severe cold regions,a dual-source hybrid heat pump unit(DSHHPU)is proposed.The mathematical models of the DSHHPU when charging R134a or its alternative refrigerants R32,R290 and R600a were established respectively,and the performance was simulated and analysed.The results showed that the four refrigerants have different performance characteristics in different aspects.In heat pipe mode,the heating capacity and evaporating pressure of R32 are 36.94%and 59.94%higher than those of R134a.The heating capacity and evaporating pressure of R290 are 5.73%and 22.99%lower than those of R134a.The heating capacity and evaporating pressure of R600a are 43.29%and 68.08%lower than those of R134a.In vapour compression heating mode,the discharge temperature of R32,R290 and R600a are 184.88,72.98 and 66.44%of that of R134a.The coefficient of performance(COP)of R32,R290 and R600a are 72.65,111.59 and 117.94%of that of R134a.Finally,the effects of radiation intensity and ambient temperature on key performance parameters of the different refrigerants were analysed.The research results provide a reference for research on refrigerant replacements for multi-heat source composite heat pump systems.展开更多
文摘The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.
文摘By means of the Second Law of Thermodynamics,thispaper gives out the entropy analysis method for vapor-comperession refrigeration system.The thermal irrevers-ibility of the system charged with R12 and its hopeful al-ternative refrlgerant R134a have been studied respective-ly.On the basis of all the research results of this paper,the measure used to save energy for vapor-compressionrefrigeration system has been put out.
基金supported by the National Natural Science Foundation of China(Grant No.:51936009).
文摘Compression-absorption cascade refrigeration cycle(CACRC)combined with vapor-compression refrigeration and absorption refrigeration cycle attracts great interest due to the less electricity consumption and utilization waste heat.In this work,the performance of the CACRC system was investigated using 16 refrigerants in the vapor compression section and H_(2)O-LiBr in the absorption refrigeration section.Energy,exergy and economic analysis of the CACRC system were carried out and the results were compared.Results show that RE170/H_(2)O-LiBr presents the better coefficient of performance and exergy efficiency amongst all the studied fluids.In addition,the economic optimization,multi-objective optimization,and thermodynamic optimization of the CACRC system based on the RE170/H_(2)O-LiBr working fluid were also carried out.
基金Supported by the Key Technology R&D Program of Tianjin,China(No.11ZCKFGX21100)Tianjin New Coastal District "Ten Campaign" Major Science and Technology Project(No.2010-BK140009 and 2010-BK140002)+1 种基金National Basic Research Program of China("973" Program,No.2009CB219900)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT0936)
文摘A refrigerant mixture TJR02 was developed and the comparison experiment was performed on a singlestage vapor compression refrigeration system originally designed for R22.Experimental results show that TJR02 can be directly used in the system without modifying the original system or changing lubricant.By replacing R22 with TJR02,cooling rate gets faster and at least 20% of energy is saved.The actual detection in the standard test-bed verifies the experimental results and indicates that the adoption of TJR02 leads to greater efficiency and wider application.And the lower the refrigeratory temperature is,the more obvious the energy saving effects will be.
基金National Natural Science Foundation of China(No.51906013)The Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture,China(JDYC20200316)。
文摘Considering the issues of energy saving and environment protection,the performance of refrigeration systems requires to be improved.In recent years,nano-fluids have attracted greatly attention from the researchers due to their outstanding thermal characteristics.In this work,the published investigations on the preparation and characterization of nano-fluids have been discussed at first.Furthermore,the key thermo-physical properties of nano-fluids,such as thermal conductivity,viscosity,specific heat and density have been summarized.Finally,the performance enhancements in different types of refrigeration systems by using nano-fluids have been reviewed.It is concluded that nano-fluids as refrigerant,lubricant or secondary fluid have wide potential application in refrigeration systems.
基金This work was financially sponsored by National Natural Science Foundation of China(No.51906216)Zhejiang Provincial Natural Science Foundation of China(No.LQ18E060001)European Union project H2020-MSCA-RISE 778104.
文摘In this paper,the entrainment ratio,pump work,heat loads of heat exchangers and COPthermal were theoretically evaluated for a solar-driven ejector-vapor compression hybrid refrigeration system with R1233zd(E)and R1336mzz(Z)as the working fluids.The evaluation of the utilization potentials of R1233zd(E)and R1336mzz(Z)was presented by comparing the system performance with that of R245fa,a commonly used refrigerant in the ejector system.The results indicated that the systems with R1233zd(E)and R1336mzz(Z)had a higher entrainment ratio and lower pump work.The pump works when using R1233zd(E)and R1336mzz(Z)can be up to 14.59%and 38.05%lower than those of R245fa,respectively.Meanwhile,the system showed the highest COPthermal utilizing R1233zd(E)followed by that of R245fa,with the R1336mzz(Z)system having the lowest value.The differences between R1233zd(E)and R1336mzz(Z)systems,R1233zd(E)and R245fa systems were 4.33%and 2.0%,respectively.This paper was expected to provide a good reference for the utilizing prospect of R1233zd(E)and R1336mzz(Z)in ejector refrigeration systems.
文摘In this paper,the operation perfonnance of three novel kinds of cogeneration systems under design and off-design condition was investigated.The systems are MGT(micro gas turbine)+ORC(organic Rankine cycle)for electricity demand,MGT+ERC(ejector refrigeration cycle)for electricity and cooling demand,and MGT+ORC+ERC for electricity and cooling demand.The effect of 5 different working fluids on cogeneration systems was studied.The results show that under the design condition,when using R600 in the bottoming cycle,the MGT+ORC system has the lowest total output of 117.1 kW with a thermal efficiency of 0.334,and the MGT+ERC system has the largest total output of 142.6 kW with a thermal efficiency of 0.408.For the MGT+ORC+ERC system,the total output is between the other two systems,which is 129.3 kW with a thermal efficiency of 0.370.For the effect of different working fluids,R123 is the most suitable working fluid for MGT+ORC with the maximum electricity output power and R600 is the most suitable working fluid for MGT+ERC with the maximum cooling capacity,while both R600 and R123 can make MGT+ORC+ERC achieve a good comprehensive performance of refrigeration and electricity.The thermal efficiency of three cogeneration systems can be effectively improved under oredesign condition because the bottoming cycle can compensate for the power decrease of MGT.The results obtained in this paper can provide a reference for the design and operation of the cogeneration system for distributed energy systems(DES).
文摘In this study,the potential implementation of three different low-GWP refrigerants(R32,R452B,and R454B)as replacements for R410A was investigated.The study was performed using a simulation tool developed by the authors called RACHP-Lab,which is a vapor compression system simulation tool developed based on physics-based simulation for typical mini-split air conditioners.The simulation study was carried out and validated using experimental performance data of 10 different air conditioning units available in the Egyptian market.The units included fixed-speed or variable-speed compressors and operated in cooling or heating modes.Drop-in replace-ment with the new refrigerants was carried out.For R32,the capacity increased between 4.9%and 13%for cooling cases,and 6.3%and 12.4%for heating cases.However,COP did not improve in all cases.For R452B and R454B with direct replacement,the capacity nearly remained the same,with an increase of COP between 1.6%and 8.0%.Soft optimization was also conducted on cooling cases where compressor suction superheat,condenser subcooling,and compressor volumetric speed were optimized to maximize COP while maintaining the original capacity of R410A.R32 showed an improvement of COP over R410A between 4.6%and 15.5%,while for R452B and R454B between 2.2%and 13.2%.
基金Supported by the National Natural Science Foundation of China (51076021)
文摘The ionic liquid, 1-butyl-3-methylimidazolium dibutylphosphate ([BMIM][DBP]) was prepared and the vapor pressures of three set of binary solutions H2O(1)/CH3OH(1)/C2H5OH(1) + [BMIM][DBP](2) were measured at different temperature and in the ILs mole fraction range from 0.1 to 0.6 with a static equilibrium apparatus. The measured vapor pressures were correlated with Non-Random Two Liquid (NRTL) activity coefficient model and the average relative deviations (ARD) between experimental and correlated vapor pressures for these binary solutions were 3.19%, 2.42% and 2.95%, respectively. Then, the vapor pressures of two set of ternary solutions H2O(1) + CH3OH(2)/C2H5OH(2) + [BMIM][DBP](3) were measured with an inclined boiling apparatus and further predicted with NRTL activity coefficient model based on the binary interaction parameters coming from fitting the vapor pressures of the binary solutions. The results indicated that the ternary solutions containing [BMIM][DBP] were shown a strong negative deviation from Raoult's Law when the mole fraction of [BMIM][DBP] was larger than 0.2, which meant that ternary solutions could absorb the refrigerant vapors at the same or below solution temperature. Meanwhile, the average relative deviations between experimental and predicted vapor pressures for ternary solutions were 2.92% and 3.06%, respectively. Consequently, the NRTL active coefficient model used for non-electrolyte solutions was still valid for predicting vapor-liquid equilibrium of binary or ternary solutions containing ILs.
基金supported by the Nation Natural Science Foundation of China (No. 50806063)the Program for Key Innovative Research Team of Zhejiang Province (No. 2009R50036), China
文摘In this paper, a new ternary non-azeotropic mixture of HFC-161/125/143a (0.15/0.45/0.40 in mass fraction), as a promising mixed refrigerant to R404A, is presented. The ozone depletion potential (ODP) of the new refrigerant is zero and its basic thermodynamic properties are similar to those of R404A, but its global warming potential (GWP) is much smaller than those of R507A and R404A. Meanwhile, theoretical calculations show that, under the working condition 1 (the average evaporation temperature: -23℃, the average condensing temperature: 43℃, the superheat temperature: 28℃, the subcooling temperature: 5 ℃), the volumetric refrigerating effect and specific refrigerating effect of the new mixture are 2.33% and 15.48% higher, re- spectively, than those of R404A. The coefficient of performance (COP) of the new mixture is 5.19% higher than that of R404A and the pressure ratio of the new mixture is 0.82% lower than that of R404A. Equally, under the working condition II (the average evaporation temperature: -40℃, the average condensing temperature: 35℃, the superheating temperature: 30 ~C, the subcooling temperature: 5℃), the volumetric refrigerating effect and specific refrigerating effect of the new mixture are 2.24% and 20.58% higher, respectively, than those of R404A. The COP of the new mixture is 4.60% higher than that of R404A and the pressure ratio of the new mixture is similar to that of R404A. The performances of the new mixture and R404A are compared in a vapor compressor refrigeration apparatus originally designed for R404A under several working conditions (condensing temperatures: 35-45℃, evaporation temperatures: -40--20℃). Experimental results show that the new mixture can obtain a higher COP, by 6.3% to 12.1%, and a lower pressure ratio, by 1.8% to 6.6%, compared to R404A; although the discharge temperature of the new mixture is slightly higher than that of R404A. The advantages of the new mixture will be further verified in the actual system.
基金The authors gratefully acknowledge the support from the Natural Science Foundation of China(grant No.51778115)the Fundamen-tal Research Funds for the Central Universities(grant No.N182502043).
文摘To solve the problems of single heat source heat pump systems in severe cold regions,a dual-source hybrid heat pump unit(DSHHPU)is proposed.The mathematical models of the DSHHPU when charging R134a or its alternative refrigerants R32,R290 and R600a were established respectively,and the performance was simulated and analysed.The results showed that the four refrigerants have different performance characteristics in different aspects.In heat pipe mode,the heating capacity and evaporating pressure of R32 are 36.94%and 59.94%higher than those of R134a.The heating capacity and evaporating pressure of R290 are 5.73%and 22.99%lower than those of R134a.The heating capacity and evaporating pressure of R600a are 43.29%and 68.08%lower than those of R134a.In vapour compression heating mode,the discharge temperature of R32,R290 and R600a are 184.88,72.98 and 66.44%of that of R134a.The coefficient of performance(COP)of R32,R290 and R600a are 72.65,111.59 and 117.94%of that of R134a.Finally,the effects of radiation intensity and ambient temperature on key performance parameters of the different refrigerants were analysed.The research results provide a reference for research on refrigerant replacements for multi-heat source composite heat pump systems.