The fiber Bragg grating (FBG) is a passive optical fiber component with the refractive index modulated along the fiber length and has been widely applied in fiber sensing systems. High-temperature stable fiber grati...The fiber Bragg grating (FBG) is a passive optical fiber component with the refractive index modulated along the fiber length and has been widely applied in fiber sensing systems. High-temperature stable fiber gratings are promising for uses at high temperatures and attract extensive attention. In this paper, FBGs were inscribed in hydrogen loaded standard single mode fibers with the 248-nm excimer laser, and regenerated gratings were obtained through heat treatment. The shift of the central wavelength of the regenerated FBG had a good linearity with temperature, and the reflectivity of the regenerated FBG could almost keep unchanged at 800 ℃.展开更多
Regenerated gratings seeded by type-I gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other ...Regenerated gratings seeded by type-I gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other gratings. These ultra-high temperature (UHT) gratings extend the applicability of silicate based components to high temperature applications such as monitoring of smelters and vehicle and aircraft engines to high power fibre lasers.展开更多
Thermally regenerated low-reflectivity fiber Bragg gratings(RFBGs), as one mirror of a resonant cavity, have been introduced as linear-cavity fiber lasers combining with fiber saturable absorbers. The output of lasi...Thermally regenerated low-reflectivity fiber Bragg gratings(RFBGs), as one mirror of a resonant cavity, have been introduced as linear-cavity fiber lasers combining with fiber saturable absorbers. The output of lasing presents an optical signal-to-noise ratio of 50 dB and temperature sensitivity coefficient of 15.36 pm∕℃ for the heating process and 15.46 pm∕℃ for the cooling process. The lasing wavelength variation and power fluctuation at 700℃ are less than 0.02 nm and 0.21 dB, respectively. The RFBG-based fiber laser sensing has displayed good linearity for both the temperature rising and cooling processes, and favorable stability at high temperatures.展开更多
The Letter reports the thermal stability and strain response of Fabry–Perot(FP) cavity under different high temperatures. The FP cavity was made by thermal regeneration of two identical cascaded fiber Bragg gratings(...The Letter reports the thermal stability and strain response of Fabry–Perot(FP) cavity under different high temperatures. The FP cavity was made by thermal regeneration of two identical cascaded fiber Bragg gratings(FBGs). It is demonstrated that the FP cavity is capable of measuring temperatures from 300℃ to 900℃ with a temperature sensitivity of 15.97 pm/℃. The elongation of the fiber was observed through the drifted Bragg wavelength at 700℃ or above when weight was loaded. The elongation was further inferred by the slight change in the interference spectra of the FP cavity at 900℃.展开更多
基金This work was supported by the Major Program of the National Natural Science Foundation of China (Grant No. 61290311).
文摘The fiber Bragg grating (FBG) is a passive optical fiber component with the refractive index modulated along the fiber length and has been widely applied in fiber sensing systems. High-temperature stable fiber gratings are promising for uses at high temperatures and attract extensive attention. In this paper, FBGs were inscribed in hydrogen loaded standard single mode fibers with the 248-nm excimer laser, and regenerated gratings were obtained through heat treatment. The shift of the central wavelength of the regenerated FBG had a good linearity with temperature, and the reflectivity of the regenerated FBG could almost keep unchanged at 800 ℃.
基金supported by the Australian Research Council (ARC) Discovery Project.
文摘Regenerated gratings seeded by type-I gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other gratings. These ultra-high temperature (UHT) gratings extend the applicability of silicate based components to high temperature applications such as monitoring of smelters and vehicle and aircraft engines to high power fibre lasers.
基金supported by the Beijing Outstanding Talent Training Funded Project(No.2015000020124G074)the 111 Project(No.D17021)the Changjiang Scholars and Innovative Research Team in University(No.IRT_16R07)
文摘Thermally regenerated low-reflectivity fiber Bragg gratings(RFBGs), as one mirror of a resonant cavity, have been introduced as linear-cavity fiber lasers combining with fiber saturable absorbers. The output of lasing presents an optical signal-to-noise ratio of 50 dB and temperature sensitivity coefficient of 15.36 pm∕℃ for the heating process and 15.46 pm∕℃ for the cooling process. The lasing wavelength variation and power fluctuation at 700℃ are less than 0.02 nm and 0.21 dB, respectively. The RFBG-based fiber laser sensing has displayed good linearity for both the temperature rising and cooling processes, and favorable stability at high temperatures.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in the University of Ministry of Education of China(No.IRT_16R07)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions(No.IDHT20170510)
文摘The Letter reports the thermal stability and strain response of Fabry–Perot(FP) cavity under different high temperatures. The FP cavity was made by thermal regeneration of two identical cascaded fiber Bragg gratings(FBGs). It is demonstrated that the FP cavity is capable of measuring temperatures from 300℃ to 900℃ with a temperature sensitivity of 15.97 pm/℃. The elongation of the fiber was observed through the drifted Bragg wavelength at 700℃ or above when weight was loaded. The elongation was further inferred by the slight change in the interference spectra of the FP cavity at 900℃.