Cell transplantation therapy has certain limitations including immune rejection and limited cell viability,which seriously hinder the transformation of stem cellbased tissue regeneration into clinical practice.Extrace...Cell transplantation therapy has certain limitations including immune rejection and limited cell viability,which seriously hinder the transformation of stem cellbased tissue regeneration into clinical practice.Extracellular vesicles(EVs)not only possess the advantages of its derived cells,but also can avoid the risks of cell transplantation.EVs are intelligent and controllable biomaterials that can participate in a variety of physiological and pathological activities,tissue repair and regeneration by transmitting a variety of biological signals,showing great potential in cell-free tissue regeneration.In this review,we summarized the origins and characteristics of EVs,introduced the pivotal role of EVs in diverse tissues regeneration,discussed the underlying mechanisms,prospects,and challenges of EVs.We also pointed out the problems that need to be solved,application directions,and prospects of EVs in the future and shed new light on the novel cell-free strategy for using EVs in the field of regenerative medicine.展开更多
Rising concern in environmental issues on global scale has made energy saving in powered equipment a very important subject.In order to improve the energy efficiency and driving range of a motor hoist,a regenerative b...Rising concern in environmental issues on global scale has made energy saving in powered equipment a very important subject.In order to improve the energy efficiency and driving range of a motor hoist,a regenerative braking system is designed and discussed.The system takes a unique ultracapacitor-only approach to energy storage system.The bi-directional bride DC?DC converter which regulates current flow to and from the ultracapacitor operates in two modes:boost and buck,depending on the direction of the flow.In order to provide constant input and output current at the ultracapacitor,this system uses a double proportional-integral(PI) control strategy in regulating the duty cycle of PWM to the DC?DC converter.The permanent magnet synchronous motor(PWSM) drive system is also studied.The space vector pulse width modulation(SVPWM) technique,along with a two-closed-loop vector control model,is adopted after detailed analysis of PMSM characteristics.The overall model and control strategy for this regenerative braking system is ultimately built and simulated under the MATLAB and Simulink environment.A test platform is built to obtain experimental results.Analysis of the results reveals that more than half of the gravitational potential energy can be recovered by this system.Simulation and experimentation results testify the validity of the double PI control strategy for interface circuit of ultracapacitor and SVPWM strategy for PMSM.展开更多
The active suspension has undoubtedly improved the performance of the vehicle,however,the trend of“lowcarbonization,intelligence,and informationization”in the automotive industry has put forward higher and more urge...The active suspension has undoubtedly improved the performance of the vehicle,however,the trend of“lowcarbonization,intelligence,and informationization”in the automotive industry has put forward higher and more urgent requirements for the suspension system.The automotive industry and researchers favor active energy regeneration suspension technology with safety,comfort,and high energy regenerative efficiency.In this paper,we review the research progress of the structure form,optimization method,and control strategy of electromagnetic energy regenerative suspension.Specifically,comparing the pros and cons of the existing technology in solving the contradiction between dynamic performance and energy regeneration.In addition,the development trend of electromagnetic energy regenerative suspension in the field of structure form,optimization method,and control technology prospects.展开更多
In bi-directional three-node cooperation, one regenerative strategy with network coding and power optimization is proposed for system sum-rate under a total energy constraint. In this paper, the network coding and pow...In bi-directional three-node cooperation, one regenerative strategy with network coding and power optimization is proposed for system sum-rate under a total energy constraint. In this paper, the network coding and power optimization are applied to improve system sum-rate. But max-rain optimization problem in power allocation is a NP-hard problem. In high Signal-to-Noise Ratio regime, this NP-hard problem is transformed into constrained polynomial optimization problem, which can be computed in polynomial time. Although it is a suboptimal solution, numerical simulations show that this strategy enhances the system sum-rate up to 45% as compared to a traditional four-phase strategy, and up to 13% as compared to the three-phase strategy without power optimization.展开更多
Regeneration in the central nervous system (CNS) is limited, and CNS damage often leads to cognitive impairment or permanent functional motor and sensory loss. Impaired regenerative capacity is multifactorial and in...Regeneration in the central nervous system (CNS) is limited, and CNS damage often leads to cognitive impairment or permanent functional motor and sensory loss. Impaired regenerative capacity is multifactorial and includes inflammation, loss of the blood-brain barrier, and alteration in the extracellular matrix (ECM). One of the main problems is the formation of a glial scar and the production of inhibitory ECM, such as proteoglycans, that generates a physical and mechanical barrier, impeding axonal regrowth (Figure 1A).展开更多
Axonal junction defects and an inhibitory environment after spinal cord injury seriously hinder the regeneration of damaged tissues and neuronal functions. At the site of spinal cord injury, regenerative biomaterials ...Axonal junction defects and an inhibitory environment after spinal cord injury seriously hinder the regeneration of damaged tissues and neuronal functions. At the site of spinal cord injury, regenerative biomaterials can fill cavities, deliver curative drugs, and provide adsorption sites for transplanted or host cells. Some regenerative biomaterials can also inhibit apoptosis, inflammation and glial scar formation, or further promote neurogenesis, axonal growth and angiogenesis. This review summarized a variety of biomaterial scaffolds made of natural, synthetic, and combined materials applied to spinal cord injury repair. Although these biomaterial scaffolds have shown a certain therapeutic effect in spinal cord injury repair, there are still many problems to be resolved, such as product standards and material safety and effectiveness.展开更多
Regenerative rehabilitation is a novel and rapidly developing multidisciplinaryfield that converges regenerative medicine and rehabilitation science,aiming to maximize the functions of disabled patients and their indep...Regenerative rehabilitation is a novel and rapidly developing multidisciplinaryfield that converges regenerative medicine and rehabilitation science,aiming to maximize the functions of disabled patients and their independence.While regenerative medicine provides state-of-the-art technologies that shed light on difficult-to-treated diseases,regenerative rehabilitation offers rehabilitation interventions to improve the positive effects of regenerative medicine.However,regenerative scientists and rehabilitation professionals focus on their aspects without enough exposure to advances in each other’sfield.This disconnect has impeded the development of thisfield.Therefore,this reviewfirst introduces cutting-edge tech-nologies such as stem cell technology,tissue engineering,biomaterial science,gene editing,and computer sciences that promote the progress pace of regenerative medicine,followed by a summary of preclinical studies and examples of clinical investigations that integrate rehabilitative methodologies into regenerative medicine.Then,challenges in thisfield are discussed,and possible solutions are provided for future directions.We aim to provide a platform for regenerative and rehabilitative professionals and clinicians in other areas to better understand the progress of regenerative rehabilitation,thus contributing to the clinical translation and management of innovative and reliable therapies.展开更多
Proper braking force distribution strategies can improve both stability and economy performance of hybrid electric vehicles,which is prominently proved by many studies.To achieve better dynamic stable performance and ...Proper braking force distribution strategies can improve both stability and economy performance of hybrid electric vehicles,which is prominently proved by many studies.To achieve better dynamic stable performance and higher energy recovery efficiency,an effective braking control strategy for hybrid electric buses(HEB)based on vehicle mass and road slope estimation is proposed in this paper.Firstly,the road slope and the vehicle mass are estimated by a hybrid algorithm of extended Kalman filter(EKF)and recursive least square(RLS).Secondly,the total braking torque of HEB is calculated by the sliding mode controller(SMC),which uses the information of brake intensity,whole vehicle mass,and road slope.Finally,comprehensively considering driver’s braking intention and regulations of the Economic Commission for Europe(ECE),the optimal proportional relationship between regenerative braking and pneumatic braking is obtained.Furthermore,related simulations and experiments are carried out on the hardware-in-the-loop test bench.Results show that the proposed strategy can effectively improve the braking performance and increase the recovered energy through precise control of the braking torque.展开更多
A series-parallel hydraulic hybrid system applied to public buses is put torwaro, ano parameters of key components are analyzed and determined. Energy management strategy based on logic thresh- old is designed which i...A series-parallel hydraulic hybrid system applied to public buses is put torwaro, ano parameters of key components are analyzed and determined. Energy management strategy based on logic thresh- old is designed which is aimed at efficient operation of the overall system considering the operational characteristic of the components and taking the curves of engine, hydraulic pump/motor and hydrau- lic pump as the main design basis; regenerative control strategy which makes regenerative brake sys- tem and frictional brake system work harmoniously is designed to raise recovery rate of regenerative brake energy. System dynamic modeling and simulation results show that the energy control strategy designed here is able to adapt system to changes of working condition and switch the operating mode reasonably. The regenerative braking control strategy is effective in raising the utilization of energy and improving fuel economy.展开更多
基金Supported by The Interdisciplinary and Intercollege Research Project of the State Key Laboratory of Oral Disease,Sichuan University,No.2021KXK0403Health Commission of Sichuan Province,No.21PJ062。
文摘Cell transplantation therapy has certain limitations including immune rejection and limited cell viability,which seriously hinder the transformation of stem cellbased tissue regeneration into clinical practice.Extracellular vesicles(EVs)not only possess the advantages of its derived cells,but also can avoid the risks of cell transplantation.EVs are intelligent and controllable biomaterials that can participate in a variety of physiological and pathological activities,tissue repair and regeneration by transmitting a variety of biological signals,showing great potential in cell-free tissue regeneration.In this review,we summarized the origins and characteristics of EVs,introduced the pivotal role of EVs in diverse tissues regeneration,discussed the underlying mechanisms,prospects,and challenges of EVs.We also pointed out the problems that need to be solved,application directions,and prospects of EVs in the future and shed new light on the novel cell-free strategy for using EVs in the field of regenerative medicine.
基金supported by National Key Technology Research and Development Program of China (Grant No. 2007BAF10B00)
文摘Rising concern in environmental issues on global scale has made energy saving in powered equipment a very important subject.In order to improve the energy efficiency and driving range of a motor hoist,a regenerative braking system is designed and discussed.The system takes a unique ultracapacitor-only approach to energy storage system.The bi-directional bride DC?DC converter which regulates current flow to and from the ultracapacitor operates in two modes:boost and buck,depending on the direction of the flow.In order to provide constant input and output current at the ultracapacitor,this system uses a double proportional-integral(PI) control strategy in regulating the duty cycle of PWM to the DC?DC converter.The permanent magnet synchronous motor(PWSM) drive system is also studied.The space vector pulse width modulation(SVPWM) technique,along with a two-closed-loop vector control model,is adopted after detailed analysis of PMSM characteristics.The overall model and control strategy for this regenerative braking system is ultimately built and simulated under the MATLAB and Simulink environment.A test platform is built to obtain experimental results.Analysis of the results reveals that more than half of the gravitational potential energy can be recovered by this system.Simulation and experimentation results testify the validity of the double PI control strategy for interface circuit of ultracapacitor and SVPWM strategy for PMSM.
基金supported by the National Natural Science Foundation of China (51975341,51875326,and 51905319)Shandong Provincial Natural Science Foundation,China (ZR2021QE180)+1 种基金the Young Technology Talent Supporting Project of Shandong Province (2021KJ083)SDUT&Zhangdian District Integration Development Project (2021JSCG0015).
文摘The active suspension has undoubtedly improved the performance of the vehicle,however,the trend of“lowcarbonization,intelligence,and informationization”in the automotive industry has put forward higher and more urgent requirements for the suspension system.The automotive industry and researchers favor active energy regeneration suspension technology with safety,comfort,and high energy regenerative efficiency.In this paper,we review the research progress of the structure form,optimization method,and control strategy of electromagnetic energy regenerative suspension.Specifically,comparing the pros and cons of the existing technology in solving the contradiction between dynamic performance and energy regeneration.In addition,the development trend of electromagnetic energy regenerative suspension in the field of structure form,optimization method,and control technology prospects.
基金Supported by the High Technology Research and Development Program of China (No. 2006AA01Z282 2007CB310608)
文摘In bi-directional three-node cooperation, one regenerative strategy with network coding and power optimization is proposed for system sum-rate under a total energy constraint. In this paper, the network coding and power optimization are applied to improve system sum-rate. But max-rain optimization problem in power allocation is a NP-hard problem. In high Signal-to-Noise Ratio regime, this NP-hard problem is transformed into constrained polynomial optimization problem, which can be computed in polynomial time. Although it is a suboptimal solution, numerical simulations show that this strategy enhances the system sum-rate up to 45% as compared to a traditional four-phase strategy, and up to 13% as compared to the three-phase strategy without power optimization.
文摘Regeneration in the central nervous system (CNS) is limited, and CNS damage often leads to cognitive impairment or permanent functional motor and sensory loss. Impaired regenerative capacity is multifactorial and includes inflammation, loss of the blood-brain barrier, and alteration in the extracellular matrix (ECM). One of the main problems is the formation of a glial scar and the production of inhibitory ECM, such as proteoglycans, that generates a physical and mechanical barrier, impeding axonal regrowth (Figure 1A).
基金supported by the National Natural Science Foundation of China,No.81571213(to BW),No.81800583(to YYX)the 13~(th) Six Talent Peaks Project(C type)of Jiangsu Province of China(to BW)+1 种基金the Medical Science and Technique Development Foundation of Nanjing of China,No.QRX17006(to BW)the Medical Science and Innovation Platform of Nanjing of China,No.ZDX16005(to BW)
文摘Axonal junction defects and an inhibitory environment after spinal cord injury seriously hinder the regeneration of damaged tissues and neuronal functions. At the site of spinal cord injury, regenerative biomaterials can fill cavities, deliver curative drugs, and provide adsorption sites for transplanted or host cells. Some regenerative biomaterials can also inhibit apoptosis, inflammation and glial scar formation, or further promote neurogenesis, axonal growth and angiogenesis. This review summarized a variety of biomaterial scaffolds made of natural, synthetic, and combined materials applied to spinal cord injury repair. Although these biomaterial scaffolds have shown a certain therapeutic effect in spinal cord injury repair, there are still many problems to be resolved, such as product standards and material safety and effectiveness.
基金funded by grants from the National Natural Science Foundation of China (82171422)Key Research and Development Project of Hubei Province of China (2022BCA028).
文摘Regenerative rehabilitation is a novel and rapidly developing multidisciplinaryfield that converges regenerative medicine and rehabilitation science,aiming to maximize the functions of disabled patients and their independence.While regenerative medicine provides state-of-the-art technologies that shed light on difficult-to-treated diseases,regenerative rehabilitation offers rehabilitation interventions to improve the positive effects of regenerative medicine.However,regenerative scientists and rehabilitation professionals focus on their aspects without enough exposure to advances in each other’sfield.This disconnect has impeded the development of thisfield.Therefore,this reviewfirst introduces cutting-edge tech-nologies such as stem cell technology,tissue engineering,biomaterial science,gene editing,and computer sciences that promote the progress pace of regenerative medicine,followed by a summary of preclinical studies and examples of clinical investigations that integrate rehabilitative methodologies into regenerative medicine.Then,challenges in thisfield are discussed,and possible solutions are provided for future directions.We aim to provide a platform for regenerative and rehabilitative professionals and clinicians in other areas to better understand the progress of regenerative rehabilitation,thus contributing to the clinical translation and management of innovative and reliable therapies.
基金Electric Automobile and Intelligent Connected Automobile Industry Innovation Project of Anhui Province of China(Grant No.JAC2019022505)Key Research and Development Projects in Shandong Province of China(Grant No.2019TSLH701).
文摘Proper braking force distribution strategies can improve both stability and economy performance of hybrid electric vehicles,which is prominently proved by many studies.To achieve better dynamic stable performance and higher energy recovery efficiency,an effective braking control strategy for hybrid electric buses(HEB)based on vehicle mass and road slope estimation is proposed in this paper.Firstly,the road slope and the vehicle mass are estimated by a hybrid algorithm of extended Kalman filter(EKF)and recursive least square(RLS).Secondly,the total braking torque of HEB is calculated by the sliding mode controller(SMC),which uses the information of brake intensity,whole vehicle mass,and road slope.Finally,comprehensively considering driver’s braking intention and regulations of the Economic Commission for Europe(ECE),the optimal proportional relationship between regenerative braking and pneumatic braking is obtained.Furthermore,related simulations and experiments are carried out on the hardware-in-the-loop test bench.Results show that the proposed strategy can effectively improve the braking performance and increase the recovered energy through precise control of the braking torque.
基金Supported by the National Natural Science Foundation of China(No.50875054)Weihai Science and Technology Development Plan Project(No.2012DXGJ13)
文摘A series-parallel hydraulic hybrid system applied to public buses is put torwaro, ano parameters of key components are analyzed and determined. Energy management strategy based on logic thresh- old is designed which is aimed at efficient operation of the overall system considering the operational characteristic of the components and taking the curves of engine, hydraulic pump/motor and hydrau- lic pump as the main design basis; regenerative control strategy which makes regenerative brake sys- tem and frictional brake system work harmoniously is designed to raise recovery rate of regenerative brake energy. System dynamic modeling and simulation results show that the energy control strategy designed here is able to adapt system to changes of working condition and switch the operating mode reasonably. The regenerative braking control strategy is effective in raising the utilization of energy and improving fuel economy.