We report on a compact passive mode-locked Er:fiber ring laser operated at the fundamental repetition rate of 517 MHz, which we believe is the highest fundamental repetition rate ever reported in a ring cavity fiber l...We report on a compact passive mode-locked Er:fiber ring laser operated at the fundamental repetition rate of 517 MHz, which we believe is the highest fundamental repetition rate ever reported in a ring cavity fiber laser.The key technique is the employment of two innovative high-power wavelength domain multiplexer collimators with all gain fiber cavity suited for the high power(up to 2 W) pumping. The laser is featured with a direct chirpfree output pulse, which is 97 fs without extracavity compression at an average output power of 90 mW.展开更多
All optical clock recovery from non return-to-zero (NRZ) data using an semiconductor optical amplifier (SOA) loop mirror and a mode-locked SOA fibcr lascr is firstly schematically explained and experimentally demo...All optical clock recovery from non return-to-zero (NRZ) data using an semiconductor optical amplifier (SOA) loop mirror and a mode-locked SOA fibcr lascr is firstly schematically explained and experimentally demonstrated at 10 Gb/s. Furthermore, the pulse quality of tile recovered cluck is cffcctivcly improved by using a continuous-wave (CW) assist light in the gain region of SOA, through which the amplitude modulation is reduced from 57.2% to 8.47%. This scheme is a promising method for clock recovery from NRZ data in the future all-optical communication networks.展开更多
A couple of simple-structure phase modulators were used in active mode-locked fiber laser to implement repetition rate continuous tuning. The laser produces pulse as short as 5.7 ps whose repetition rate tuning can co...A couple of simple-structure phase modulators were used in active mode-locked fiber laser to implement repetition rate continuous tuning. The laser produces pulse as short as 5.7 ps whose repetition rate tuning can cover the spacing of the adjoining order mode-locking frequencies.展开更多
基金supported by the Major National Basic Research Program of China (2013CB922401)the National Natural Science Foundation of China (60927010, 10974006, and 11027404)
文摘We report on a compact passive mode-locked Er:fiber ring laser operated at the fundamental repetition rate of 517 MHz, which we believe is the highest fundamental repetition rate ever reported in a ring cavity fiber laser.The key technique is the employment of two innovative high-power wavelength domain multiplexer collimators with all gain fiber cavity suited for the high power(up to 2 W) pumping. The laser is featured with a direct chirpfree output pulse, which is 97 fs without extracavity compression at an average output power of 90 mW.
基金This work was supported by the National Natural Sci-ence Foundation of China (No. 90401025)the Key Project of MOE (No. 105036).
文摘All optical clock recovery from non return-to-zero (NRZ) data using an semiconductor optical amplifier (SOA) loop mirror and a mode-locked SOA fibcr lascr is firstly schematically explained and experimentally demonstrated at 10 Gb/s. Furthermore, the pulse quality of tile recovered cluck is cffcctivcly improved by using a continuous-wave (CW) assist light in the gain region of SOA, through which the amplitude modulation is reduced from 57.2% to 8.47%. This scheme is a promising method for clock recovery from NRZ data in the future all-optical communication networks.
文摘A couple of simple-structure phase modulators were used in active mode-locked fiber laser to implement repetition rate continuous tuning. The laser produces pulse as short as 5.7 ps whose repetition rate tuning can cover the spacing of the adjoining order mode-locking frequencies.