Scale-up of the high shear wet granulation (HSWG) process is considered a challenge because HSWG is complex and influenced by numerous factors, including equipment, formulation, and process variables. For a system o...Scale-up of the high shear wet granulation (HSWG) process is considered a challenge because HSWG is complex and influenced by numerous factors, including equipment, formulation, and process variables. For a system of microcrystalline cellulose and water, HSWG experiments at three scales (1, 2, and 4 L working vessel) were conducted with a granulator. Scale-up was implemented on the basis of a nucleation regime map approach. To keep dimensionless spray flux and drop penetration time constant, water addition time at three processing scales were 300, 442, and 700 s, respectively. The other process parameters were kept unchanged. Granule size distributions were plotted and compared, and scanning electron microscopy was used to analyze granule surface morphology. Physical characterization was undertaken using a modified SeDeM method. At nearly all scales, granule yield was greater than 85% and all the cosine values were larger than 0.89. At the same experiment points, granules at all scales had similar surface morphology and similar physical characteristics. The results demonstrate that a rational scaling-up of the HSWG process is feasible using a regime map approach.展开更多
The flow patterns and the void fraction related to a gas-liquid two-phase flow in a small channel are experimentally studied.The test channel is a transparent quartz glass circular channel with an inner diameter of 6....The flow patterns and the void fraction related to a gas-liquid two-phase flow in a small channel are experimentally studied.The test channel is a transparent quartz glass circular channel with an inner diameter of 6.68 mm.The working fluids are air and water and their superficial velocities range from 0.014 to 8.127 m/s and from 0.0238 to 0.556 m/s,respectively.The void fraction is determined using the flow pattern images captured by a high-speed camera,while quick closing valves are used for verification.Four flow patterns are analyzed in experiments:slug flow,bubbly flow,annular flow and stratified flow.For intermittent flows(bubbly flow and slug flow),the cross-sectional void fraction is in a borderline condition while its probability distribution function(PDF)image displays a bimodal structure.For continuous flows(annular flow and stratified flow)the cross-sectional void fraction behaves as a fluctuating continuous curve while the(PDF)image displays a single peak structure.The volumetric void fraction data are also compared with available predictive formulas,and the results show that the agreement is very good.An effort is also provided to improve the so-called Gregory and Scott model using the available data.展开更多
In this paper, the flow patterns observed in horizontal Couette-Taylor flow(CTF) were correlated using dimensionless numbers. The analysis of the results showed that the structure of the flow was an outcome of inter...In this paper, the flow patterns observed in horizontal Couette-Taylor flow(CTF) were correlated using dimensionless numbers. The analysis of the results showed that the structure of the flow was an outcome of interaction between fluid inertia related to axial and rotational flows and gravitation. Therefore, the flow structures were correlated using axial and angular Reynolds numbers, and Archimedes number for the given value of gas-to-liquid flow ratio. Finally, the correlation for the prediction of the transition to the flow regime observed at high rotational speeds was proposed. The comparison with experiments carried out in the vertical CTF from the literature showed that this correlation can also be useful in the case of vertical flow.展开更多
基金The authors acknowledge research funding support from the Beijing Natural Science Foundation of China: study on the dimensionless modeling of high shear wet granulation process for Tanshinone extract (No. 7154217), joint development program funding from the Beijing Municipal Education Commission of China (Key Laboratory Construction Project: study on the integrated modeling and optimization technology of the pharmaceutical process of Chinese medicine preparations), and the program funding from the National Natural Science Foundation of China: study on the quality transfer model and global optimization method of the chained pharmaceutical process of Chinese medicine products (No. B1403112).
文摘Scale-up of the high shear wet granulation (HSWG) process is considered a challenge because HSWG is complex and influenced by numerous factors, including equipment, formulation, and process variables. For a system of microcrystalline cellulose and water, HSWG experiments at three scales (1, 2, and 4 L working vessel) were conducted with a granulator. Scale-up was implemented on the basis of a nucleation regime map approach. To keep dimensionless spray flux and drop penetration time constant, water addition time at three processing scales were 300, 442, and 700 s, respectively. The other process parameters were kept unchanged. Granule size distributions were plotted and compared, and scanning electron microscopy was used to analyze granule surface morphology. Physical characterization was undertaken using a modified SeDeM method. At nearly all scales, granule yield was greater than 85% and all the cosine values were larger than 0.89. At the same experiment points, granules at all scales had similar surface morphology and similar physical characteristics. The results demonstrate that a rational scaling-up of the HSWG process is feasible using a regime map approach.
基金This work was supported by the Guangdong Basic and Applied Basic Research Foundation(2019A1515111116)Key R&D Program of Shandong Province(Nos.2019GSF109051,2019GGX101030)+1 种基金Shandong Provincial Postdoctoral Innovation Project(No.201902002)Foundation of Shandong University for Young Scholar’s Future Plans.
文摘The flow patterns and the void fraction related to a gas-liquid two-phase flow in a small channel are experimentally studied.The test channel is a transparent quartz glass circular channel with an inner diameter of 6.68 mm.The working fluids are air and water and their superficial velocities range from 0.014 to 8.127 m/s and from 0.0238 to 0.556 m/s,respectively.The void fraction is determined using the flow pattern images captured by a high-speed camera,while quick closing valves are used for verification.Four flow patterns are analyzed in experiments:slug flow,bubbly flow,annular flow and stratified flow.For intermittent flows(bubbly flow and slug flow),the cross-sectional void fraction is in a borderline condition while its probability distribution function(PDF)image displays a bimodal structure.For continuous flows(annular flow and stratified flow)the cross-sectional void fraction behaves as a fluctuating continuous curve while the(PDF)image displays a single peak structure.The volumetric void fraction data are also compared with available predictive formulas,and the results show that the agreement is very good.An effort is also provided to improve the so-called Gregory and Scott model using the available data.
文摘In this paper, the flow patterns observed in horizontal Couette-Taylor flow(CTF) were correlated using dimensionless numbers. The analysis of the results showed that the structure of the flow was an outcome of interaction between fluid inertia related to axial and rotational flows and gravitation. Therefore, the flow structures were correlated using axial and angular Reynolds numbers, and Archimedes number for the given value of gas-to-liquid flow ratio. Finally, the correlation for the prediction of the transition to the flow regime observed at high rotational speeds was proposed. The comparison with experiments carried out in the vertical CTF from the literature showed that this correlation can also be useful in the case of vertical flow.