Ground military target recognition plays a crucial role in unmanned equipment and grasping the battlefield dynamics for military applications, but is disturbed by low-resolution and noisyrepresentation. In this paper,...Ground military target recognition plays a crucial role in unmanned equipment and grasping the battlefield dynamics for military applications, but is disturbed by low-resolution and noisyrepresentation. In this paper, a recognition method, involving a novel visual attention mechanismbased Gabor region proposal sub-network(Gabor RPN) and improved refinement generative adversarial sub-network(GAN), is proposed. Novel central-peripheral rivalry 3D color Gabor filters are proposed to simulate retinal structures and taken as feature extraction convolutional kernels in low-level layer to improve the recognition accuracy and framework training efficiency in Gabor RPN. Improved refinement GAN is used to solve the problem of blurry target classification, involving a generator to directly generate large high-resolution images from small blurry ones and a discriminator to distinguish not only real images vs. fake images but also the class of targets. A special recognition dataset for ground military target, named Ground Military Target Dataset(GMTD), is constructed. Experiments performed on the GMTD dataset effectively demonstrate that our method can achieve better energy-saving and recognition results when low-resolution and noisy-representation targets are involved, thus ensuring this algorithm a good engineering application prospect.展开更多
基金the National Key Research and Development Program of China(No.2016YFC0802904)National Natural Science Foundation of China(No.61671470)Natural Science Foundation of Jiangsu Province(BK20161470).
文摘Ground military target recognition plays a crucial role in unmanned equipment and grasping the battlefield dynamics for military applications, but is disturbed by low-resolution and noisyrepresentation. In this paper, a recognition method, involving a novel visual attention mechanismbased Gabor region proposal sub-network(Gabor RPN) and improved refinement generative adversarial sub-network(GAN), is proposed. Novel central-peripheral rivalry 3D color Gabor filters are proposed to simulate retinal structures and taken as feature extraction convolutional kernels in low-level layer to improve the recognition accuracy and framework training efficiency in Gabor RPN. Improved refinement GAN is used to solve the problem of blurry target classification, involving a generator to directly generate large high-resolution images from small blurry ones and a discriminator to distinguish not only real images vs. fake images but also the class of targets. A special recognition dataset for ground military target, named Ground Military Target Dataset(GMTD), is constructed. Experiments performed on the GMTD dataset effectively demonstrate that our method can achieve better energy-saving and recognition results when low-resolution and noisy-representation targets are involved, thus ensuring this algorithm a good engineering application prospect.