Loggerheads are distributed by ten Regional Management Units (RMUs) worldwide. The Atlantic Ocean houses three of these: the Northwest, Southwest and Northeast RMUs. The most studied is, so far, the Northwest RMU, but...Loggerheads are distributed by ten Regional Management Units (RMUs) worldwide. The Atlantic Ocean houses three of these: the Northwest, Southwest and Northeast RMUs. The most studied is, so far, the Northwest RMU, but the other two have focused attention of researchers. In contrast, marine turtles from the African Atlantic region (Southeast) belong to a complex but little-known region. What is their role in the Atlantic? Are these RMUs connected? To understand these questions, research was made of reports and publications concerning the Northeast Atlantic (NEA) RMU. The asymmetry in information and available knowledge about NEA is high when compared to other RMUs. This demonstrates that there is still a lack of conservation programs besides Cape Verde, and that there is difficulty in transforming data (nesting ecology, molecular, telemetry, etc.) into publications. However, this issue is evident for other marine turtle species of East African Atlantic. There is a need for better scientific support, to enable local conservation programs to deliver data in reports, and even scientific publications. There are so many aspects of loggerhead’s life cycle that will only be unravelled by more and better supported studies. This is a paper that, by analysing the available information of the NEA loggerhead RMU, reflects the following steps to address in loggerhead conservation for the African Atlantic coast.展开更多
Work is currently underway to produce a map in Arc GISTM 10 of the mafic dyke swarms and related units(volcanics,sills and layered intrusions)of Russia and adjacent regions at a scale of 1:5,000,000.Over the past
The geological-geophysical map series of the eastern China seas and adjacent region (1:1 000 000) will be published in the late half year of 2009. The regional tectonic map is one of the main professional maps. The...The geological-geophysical map series of the eastern China seas and adjacent region (1:1 000 000) will be published in the late half year of 2009. The regional tectonic map is one of the main professional maps. The Mapping methods, the division method of geological tectonic units and the main geological tectonic units are mainly discussed. The strata from Pliocene to Holocene are peeled off so as to display the Pre-Pliocene structures. In basins, isopaches are drawn for the Cenozoic deposits. The plate tectonic theory and present tectonic pattern are adopted as the priorities in tectonic division. As to the division of intraplate tectonic units, it is a revision, complement and improvement of previous dividing systems, and the nomenclature for each tectonic unit follows the current system in China. The first-order tectonic unit is plate (Pacific Plate, Eurasian Plate and Philippine Sea Plate). The second-order tectonic unit is tectonic domain (East Asian continental tectonic domain,East Asian continental margin tectonic domain and west Pacific tectonic domain). The Philippine Sea Plate and the west part of the Pacific Plate are called the West Pacific tectonic domain. The part of the Eurasian Plate involved in this study area can be further divided into East Asian continental tectonic domain and East Asian continental margin tectonic domain. The East Asian continental margin domain is composed of the Ryukyu island arc, the Okinawa Trough back-arc basin and the back-arc basin of Sea of Japan. The East Asian continental tectonic domain in this study area is composed of the Sino-Korea Massif, the Changjiang River (Yangtze) Massif and South China Massif. In turn, these massifs consist of basins, folded belts or uplift zones. The basins,the folded belts or the uplift zones are further divided into uplifts and depressions made up of sags and swells.展开更多
The Sinus Iridum region, the first choice for China's"Lunar Exploration Project"is located at the center of the lunar LQ-4 area and is the site of Chang'e-3 (CE-3)'s soft landing. To make the scientific explora...The Sinus Iridum region, the first choice for China's"Lunar Exploration Project"is located at the center of the lunar LQ-4 area and is the site of Chang'e-3 (CE-3)'s soft landing. To make the scientific exploration of Chang'e-3 more targeted and scientific, and to obtain a better macro-level understanding of the geotectonic environment of the Sinus Iridum region, the tectonic elements in LQ-4 region have been studied and the typical structures were analyzed statistically using data from CE-1, Clementine, LRO and Lunar Prospector missions. Also, the mineral components and periods of mare basalt activities in the study area have been ascertained. The present study divides the tectonic units and establishes the major tectonic events and sequence of evolution in the study area based on morphology, mineral constituents, and tectonic element distribution.展开更多
The hippocampal region of the brain is important for encoding environment inputs and memory formation. However, the underlying mechanisms are unclear. To investigate the behavior of indi-vidual neurons in response to ...The hippocampal region of the brain is important for encoding environment inputs and memory formation. However, the underlying mechanisms are unclear. To investigate the behavior of indi-vidual neurons in response to somatosensory inputs in the hippocampal CA1 region, we recorded and analyzed changes in local ifeld potentials and the ifring rates of individual pyramidal cells and interneurons during tail clamping in urethane-anesthetized rats. We also explored the mechanisms underlying the neuronal responses. Somatosensory stimulation, in the form of tail clamping, chan-ged local ifeld potentials into theta rhythm-dominated waveforms, decreased the spike ifring of py-ramidal cells, and increased interneuron ifring. In addition, somatosensory stimulation attenuated orthodromic-evoked population spikes. These results suggest that somatosensory stimulation sup-presses the excitability of pyramidal cells in the hippocampal CA1 region. Increased inhibition by local interneurons might underlie this effect. These ifndings provide insight into the mechanisms of signal processing in the hippocampus and suggest that sensory stimulation might have thera-peutic potential for brain disorders associated with neuronal hyperexcitability.展开更多
文摘Loggerheads are distributed by ten Regional Management Units (RMUs) worldwide. The Atlantic Ocean houses three of these: the Northwest, Southwest and Northeast RMUs. The most studied is, so far, the Northwest RMU, but the other two have focused attention of researchers. In contrast, marine turtles from the African Atlantic region (Southeast) belong to a complex but little-known region. What is their role in the Atlantic? Are these RMUs connected? To understand these questions, research was made of reports and publications concerning the Northeast Atlantic (NEA) RMU. The asymmetry in information and available knowledge about NEA is high when compared to other RMUs. This demonstrates that there is still a lack of conservation programs besides Cape Verde, and that there is difficulty in transforming data (nesting ecology, molecular, telemetry, etc.) into publications. However, this issue is evident for other marine turtle species of East African Atlantic. There is a need for better scientific support, to enable local conservation programs to deliver data in reports, and even scientific publications. There are so many aspects of loggerhead’s life cycle that will only be unravelled by more and better supported studies. This is a paper that, by analysing the available information of the NEA loggerhead RMU, reflects the following steps to address in loggerhead conservation for the African Atlantic coast.
文摘Work is currently underway to produce a map in Arc GISTM 10 of the mafic dyke swarms and related units(volcanics,sills and layered intrusions)of Russia and adjacent regions at a scale of 1:5,000,000.Over the past
基金The National Natural Science Foundation of China under contract No 40876033the foundation of Geological Investigation Bureau of China under contract No HY126-03
文摘The geological-geophysical map series of the eastern China seas and adjacent region (1:1 000 000) will be published in the late half year of 2009. The regional tectonic map is one of the main professional maps. The Mapping methods, the division method of geological tectonic units and the main geological tectonic units are mainly discussed. The strata from Pliocene to Holocene are peeled off so as to display the Pre-Pliocene structures. In basins, isopaches are drawn for the Cenozoic deposits. The plate tectonic theory and present tectonic pattern are adopted as the priorities in tectonic division. As to the division of intraplate tectonic units, it is a revision, complement and improvement of previous dividing systems, and the nomenclature for each tectonic unit follows the current system in China. The first-order tectonic unit is plate (Pacific Plate, Eurasian Plate and Philippine Sea Plate). The second-order tectonic unit is tectonic domain (East Asian continental tectonic domain,East Asian continental margin tectonic domain and west Pacific tectonic domain). The Philippine Sea Plate and the west part of the Pacific Plate are called the West Pacific tectonic domain. The part of the Eurasian Plate involved in this study area can be further divided into East Asian continental tectonic domain and East Asian continental margin tectonic domain. The East Asian continental margin domain is composed of the Ryukyu island arc, the Okinawa Trough back-arc basin and the back-arc basin of Sea of Japan. The East Asian continental tectonic domain in this study area is composed of the Sino-Korea Massif, the Changjiang River (Yangtze) Massif and South China Massif. In turn, these massifs consist of basins, folded belts or uplift zones. The basins,the folded belts or the uplift zones are further divided into uplifts and depressions made up of sags and swells.
基金the key project (No. 2009AA122201) under the 863 program sponsored by Ministry of Science & Technology that has funded our research
文摘The Sinus Iridum region, the first choice for China's"Lunar Exploration Project"is located at the center of the lunar LQ-4 area and is the site of Chang'e-3 (CE-3)'s soft landing. To make the scientific exploration of Chang'e-3 more targeted and scientific, and to obtain a better macro-level understanding of the geotectonic environment of the Sinus Iridum region, the tectonic elements in LQ-4 region have been studied and the typical structures were analyzed statistically using data from CE-1, Clementine, LRO and Lunar Prospector missions. Also, the mineral components and periods of mare basalt activities in the study area have been ascertained. The present study divides the tectonic units and establishes the major tectonic events and sequence of evolution in the study area based on morphology, mineral constituents, and tectonic element distribution.
基金supported by Major State Basic Research Development Program of China(973 Program),No.2011CB504400
文摘The hippocampal region of the brain is important for encoding environment inputs and memory formation. However, the underlying mechanisms are unclear. To investigate the behavior of indi-vidual neurons in response to somatosensory inputs in the hippocampal CA1 region, we recorded and analyzed changes in local ifeld potentials and the ifring rates of individual pyramidal cells and interneurons during tail clamping in urethane-anesthetized rats. We also explored the mechanisms underlying the neuronal responses. Somatosensory stimulation, in the form of tail clamping, chan-ged local ifeld potentials into theta rhythm-dominated waveforms, decreased the spike ifring of py-ramidal cells, and increased interneuron ifring. In addition, somatosensory stimulation attenuated orthodromic-evoked population spikes. These results suggest that somatosensory stimulation sup-presses the excitability of pyramidal cells in the hippocampal CA1 region. Increased inhibition by local interneurons might underlie this effect. These ifndings provide insight into the mechanisms of signal processing in the hippocampus and suggest that sensory stimulation might have thera-peutic potential for brain disorders associated with neuronal hyperexcitability.