Changes in glaciers in the Chinese Tianshan Mountains have been analyzed previously. However, most previous studies focused on individual glaciers and/or decentralized glacial basins. Moreover, a majority of these stu...Changes in glaciers in the Chinese Tianshan Mountains have been analyzed previously. However, most previous studies focused on individual glaciers and/or decentralized glacial basins. Moreover, a majority of these studies were published only in Chinese, which limited their usefulness at the international level. With this in mind, the authors reviewed the previous studies to create an overview of glacial changes in the Chinese Tianshan Mountains over the last five decades and discussed the effects of glacial changes on water resources. In response to climate change, glaciers in the Tianshan Mountains are shrinking rapidly and are ca. 20% smaller on average in the past five decades. Overall, the area reduction of glacial basins in the central part of the Chinese Tianshan Mountains is larger than that in the eastern and western parts. The spatial differentiation in glacial changes are caused by both differences in regional climate and in glacial factors. The effects of glacial changes on water resources vary in different river basins due to the differences in glacier distribution, characteristics of glacial change and proportion of the glacier meltwater in river runoff.展开更多
Given the adverse effects of current water shortages,low utilization and imbalance between the supply and demand,and other status quo problems relating to social economic development,the construction industry and agri...Given the adverse effects of current water shortages,low utilization and imbalance between the supply and demand,and other status quo problems relating to social economic development,the construction industry and agriculture,a cloud model was applied to a water resource system using five sustainable water resource utilization schemes for Kiamusze,Heilongjiang Province,as an example.This research changes the qualitative description of the concept language into a quantitative analysis of an evaluation indicator.A cloud model-based analytical method for regional sustainable water resource utilization schemes was proposed,and the sustainable grades of the water resources were calculated.The research results showed that,in addition to the natural continuation of such schemes,the development trends of four new schemes achieved the sustainable utilization of water resources,and thus,the sustainable water resource utilization was optimized.However,when the open-source,throttle,comprehensive and coordination schemes were subjected to the optimum applicability analysis,based on the limiting factors in different periods,resource availability and long-term development,decision-making regarding the best solution in different periods better ensures sustainable development in Kiamusze.The research results provide a significant theoretical basis for the formulation of scientific and reasonable sustainable water resource utilization strategies in Kiamusze.展开更多
As the demands on limited water resources intensify, concerns are being raised about the human carrying capacity of these resources. However, few researchers have studied the carrying capacity of regional water resour...As the demands on limited water resources intensify, concerns are being raised about the human carrying capacity of these resources. However, few researchers have studied the carrying capacity of regional water resources. Beijing, the second-largest city in China, faces a critical water shortage that will limit the city’s future development. We developed a method to quantify the carrying capacity of Beijing’s water resources by considering water-use structures based on the proportions of water used for agricultural, industrial, and domestic purposes. We defined a reference structure as 45:22:33 (% of total, respectively), an optimized structure as 40:20:40, and an ideal structure as 50:15:35. We also considered four domestic water quotas: 55, 75, 95, and 115 m 3 /(person·yr). The urban carrying capacity of 10–12 million was closest to Beijing’s actual 2003 population for all three water-use structures with urban domestic water use of 75 m 3 /(person·yr). However, after accounting for our underlying assumptions, the adjusted carrying capacity is closer to 5–6 million. Thus, Beijing’s population in 2003 was almost twice the adjusted carrying capacity. Based on this result, we discussed the ecological and environmental problems created by Beijing’s excessive population and propose measures to mitigate these problems.展开更多
基金funded by the Funds for Creative Research Groups of China (41121001)the National Basic Research Program (2013CBA01801)+3 种基金the National Natural Science Foundation of China (41301069, 41471058)the State Key Laboratory of Cryospheric Science foundation, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (SKLCS-ZZ-2012-01-01)West Light Program for Talent Cultivation of the Chinese Academy of Sciencesthe Special Financial Grant from the China Postdoctoral Science Foundation ( 2014T70948)
文摘Changes in glaciers in the Chinese Tianshan Mountains have been analyzed previously. However, most previous studies focused on individual glaciers and/or decentralized glacial basins. Moreover, a majority of these studies were published only in Chinese, which limited their usefulness at the international level. With this in mind, the authors reviewed the previous studies to create an overview of glacial changes in the Chinese Tianshan Mountains over the last five decades and discussed the effects of glacial changes on water resources. In response to climate change, glaciers in the Tianshan Mountains are shrinking rapidly and are ca. 20% smaller on average in the past five decades. Overall, the area reduction of glacial basins in the central part of the Chinese Tianshan Mountains is larger than that in the eastern and western parts. The spatial differentiation in glacial changes are caused by both differences in regional climate and in glacial factors. The effects of glacial changes on water resources vary in different river basins due to the differences in glacier distribution, characteristics of glacial change and proportion of the glacier meltwater in river runoff.
基金The Natural Science Foundation of China(51279031,51479032,51679039 and 51579044)the Heilongjiang Province Water Conservancy Science and Technology project(201318 and 201503)+1 种基金the Heilongjiang Province Outstanding Youth Fund(JC201402)the Yangtze River Scholars Support Program of Colleges and Universities in Heilongjiang Province.
文摘Given the adverse effects of current water shortages,low utilization and imbalance between the supply and demand,and other status quo problems relating to social economic development,the construction industry and agriculture,a cloud model was applied to a water resource system using five sustainable water resource utilization schemes for Kiamusze,Heilongjiang Province,as an example.This research changes the qualitative description of the concept language into a quantitative analysis of an evaluation indicator.A cloud model-based analytical method for regional sustainable water resource utilization schemes was proposed,and the sustainable grades of the water resources were calculated.The research results showed that,in addition to the natural continuation of such schemes,the development trends of four new schemes achieved the sustainable utilization of water resources,and thus,the sustainable water resource utilization was optimized.However,when the open-source,throttle,comprehensive and coordination schemes were subjected to the optimum applicability analysis,based on the limiting factors in different periods,resource availability and long-term development,decision-making regarding the best solution in different periods better ensures sustainable development in Kiamusze.The research results provide a significant theoretical basis for the formulation of scientific and reasonable sustainable water resource utilization strategies in Kiamusze.
基金supported by the Knowledge InnovationProject of the Chinese Academy of Sciences (No. KZCX2-YW-422)
文摘As the demands on limited water resources intensify, concerns are being raised about the human carrying capacity of these resources. However, few researchers have studied the carrying capacity of regional water resources. Beijing, the second-largest city in China, faces a critical water shortage that will limit the city’s future development. We developed a method to quantify the carrying capacity of Beijing’s water resources by considering water-use structures based on the proportions of water used for agricultural, industrial, and domestic purposes. We defined a reference structure as 45:22:33 (% of total, respectively), an optimized structure as 40:20:40, and an ideal structure as 50:15:35. We also considered four domestic water quotas: 55, 75, 95, and 115 m 3 /(person·yr). The urban carrying capacity of 10–12 million was closest to Beijing’s actual 2003 population for all three water-use structures with urban domestic water use of 75 m 3 /(person·yr). However, after accounting for our underlying assumptions, the adjusted carrying capacity is closer to 5–6 million. Thus, Beijing’s population in 2003 was almost twice the adjusted carrying capacity. Based on this result, we discussed the ecological and environmental problems created by Beijing’s excessive population and propose measures to mitigate these problems.