期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Diagnosis of Middle Ear Diseases Based on Convolutional Neural Network
1
作者 Yunyoung Nam Seong Jun Choi +1 位作者 Jihwan Shin Jinseok Lee 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1521-1532,共12页
An otoscope is traditionally used to examine the eardrum and ear canal.A diagnosis of otitis media(OM)relies on the experience of clinicians.If an examiner lacks experience,the examination may be difficult and time-co... An otoscope is traditionally used to examine the eardrum and ear canal.A diagnosis of otitis media(OM)relies on the experience of clinicians.If an examiner lacks experience,the examination may be difficult and time-consuming.This paper presents an ear disease classification method using middle ear images based on a convolutional neural network(CNN).Especially the segmentation and classification networks are used to classify an otoscopic image into six classes:normal,acute otitis media(AOM),otitis media with effusion(OME),chronic otitis media(COM),congenital cholesteatoma(CC)and traumatic perforations(TMPs).The Mask R-CNN is utilized for the segmentation network to extract the region of interest(ROI)from otoscopic images.The extracted ROIs are used as guiding features for the classification.The classification is based on transfer learning with an ensemble of two CNN classifiers:EfficientNetB0 and Inception-V3.The proposed model was trained with a 5-fold cross-validation technique.The proposed method was evaluated and achieved a classification accuracy of 97.29%. 展开更多
关键词 Otitis media convolutional neural network acute otitis media otitis media with effusion chronic otitis media congenital cholesteatoma traumatic perforation mask r-cnn
下载PDF
Small objects detection in UAV aerial images based on improved Faster R-CNN 被引量:6
2
作者 WANG Ji-wu LUO Hai-bao +1 位作者 YU Peng-fei LI Chen-yang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第1期11-16,共6页
In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convo... In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convolutional neural network(Faster R-CNN)is proposed.The bird’s nest on the high-voltage tower is taken as the research object.Firstly,we use the improved convolutional neural network ResNet101 to extract object features,and then use multi-scale sliding windows to obtain the object region proposals on the convolution feature maps with different resolutions.Finally,a deconvolution operation is added to further enhance the selected feature map with higher resolution,and then it taken as a feature mapping layer of the region proposals passing to the object detection sub-network.The detection results of the bird’s nest in UAV aerial images show that the proposed method can precisely detect small objects in aerial images. 展开更多
关键词 Faster region-based convolutional neural network(Faster r-cnn) ResNet101 unmanned aerial vehicle(UAV) small objects detection bird’s nest
下载PDF
Object detection of artifact threaded hole based on Faster R-CNN 被引量:2
3
作者 ZHANG Zhengkai QI Lang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第1期107-114,共8页
In order to improve the accuracy of threaded hole object detection,combining a dual camera vision system with the Hough transform circle detection,we propose an object detection method of artifact threaded hole based ... In order to improve the accuracy of threaded hole object detection,combining a dual camera vision system with the Hough transform circle detection,we propose an object detection method of artifact threaded hole based on Faster region-ased convolutional neural network(Faster R-CNN).First,a dual camera image acquisition system is established.One industrial camera placed at a high position is responsible for collecting the whole image of the workpiece,and the suspected screw hole position on the workpiece can be preliminarily selected by Hough transform detection algorithm.Then,the other industrial camera is responsible for collecting the local images of the suspected screw holes that have been detected by Hough transform one by one.After that,ResNet50-based Faster R-CNN object detection model is trained on the self-built screw hole data set.Finally,the local image of the threaded hole is input into the trained Faster R-CNN object detection model for further identification and location.The experimental results show that the proposed method can effectively avoid small object detection of threaded holes,and compared with the method that only uses Hough transform or Faster RCNN object detection alone,it has high recognition and positioning accuracy. 展开更多
关键词 object detection threaded hole deep learning region-based convolutional neural network(Faster r-cnn) Hough transform
下载PDF
Localization and Classification of Rice-grain Images Using Region Proposals-based Convolutional Neural Network 被引量:10
4
作者 Kittinun Aukkapinyo Suchakree Sawangwong +1 位作者 Parintorn Pooyoi Worapan Kusakunniran 《International Journal of Automation and computing》 EI CSCD 2020年第2期233-246,共14页
This paper proposes a solution to localization and classification of rice grains in an image.All existing related works rely on conventional based machine learning approaches.However,those techniques do not do well fo... This paper proposes a solution to localization and classification of rice grains in an image.All existing related works rely on conventional based machine learning approaches.However,those techniques do not do well for the problem designed in this paper,due to the high similarities between different types of rice grains.The deep learning based solution is developed in the proposed solution.It contains pre-processing steps of data annotation using the watershed algorithm,auto-alignment using the major axis orientation,and image enhancement using the contrast-limited adaptive histogram equalization(CLAHE)technique.Then,the mask region-based convolutional neural networks(R-CNN)is trained to localize and classify rice grains in an input image.The performance is enhanced by using the transfer learning and the dropout regularization for overfitting prevention.The proposed method is validated using many scenarios of experiments,reported in the forms of mean average precision(mAP)and a confusion matrix.It achieves above 80%mAP for main scenarios in the experiments.It is also shown to perform outstanding,when compared to human experts. 展开更多
关键词 mask region-based convolutional neural networks(r-cnn) computer VISION deep LEARNING RICE GRAIN classification transfer LEARNING
原文传递
A Deep Learning Model of Traffic Signs in Panoramic Images Detection
5
作者 Kha Tu Huynh Thi Phuong Linh Le +1 位作者 Muhammad Arif Thien Khai Tran 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期401-418,共18页
To pursue the ideal of a safe high-tech society in a time when traffic accidents are frequent,the traffic signs detection system has become one of the necessary topics in recent years and in the future.The ultimate go... To pursue the ideal of a safe high-tech society in a time when traffic accidents are frequent,the traffic signs detection system has become one of the necessary topics in recent years and in the future.The ultimate goal of this research is to identify and classify the types of traffic signs in a panoramic image.To accomplish this goal,the paper proposes a new model for traffic sign detection based on the Convolutional Neural Network for com-prehensive traffic sign classification and Mask Region-based Convolutional Neural Networks(R-CNN)implementation for identifying and extracting signs in panoramic images.Data augmentation and normalization of the images are also applied to assist in classifying better even if old traffic signs are degraded,and considerably minimize the rates of discovering the extra boxes.The proposed model is tested on both the testing dataset and the actual images and gets 94.5%of the correct signs recognition rate,the classification rate of those signs discovered was 99.41%and the rate of false signs was only around 0.11. 展开更多
关键词 Deep learning convolutional neural network mask r-cnn traffic signs detection
下载PDF
基于卷积神经网络的生物式水质监测方法 被引量:16
6
作者 程淑红 张仕军 赵考鹏 《计量学报》 CSCD 北大核心 2019年第4期721-727,共7页
生物式水质监测通常是先通过提取水生物在不同环境下的应激反应特征,再进行特征分类,从而识别水质。针对水质监测问题,提出一种使用卷积神经网络(CNN)的方法。鱼类运动轨迹是当前所有文献使用的多种水质分类特征的综合性表现,是生物式... 生物式水质监测通常是先通过提取水生物在不同环境下的应激反应特征,再进行特征分类,从而识别水质。针对水质监测问题,提出一种使用卷积神经网络(CNN)的方法。鱼类运动轨迹是当前所有文献使用的多种水质分类特征的综合性表现,是生物式水质分类的重要依据。使用Mask-RCNN的图像分割方法,求取鱼体的质心坐标,并绘制出一定时间段内鱼体的运动轨迹图像,制作正常与异常水质下两种轨迹图像数据集。融合Inception-v3网络作为数据集的特征预处理部分,重新建立卷积神经网络对Inception-v3网络提取的特征进行分类。通过设置多组平行实验,在不同的水质环境中对正常水质与异常水质进行分类。结果表明,卷积神经网络模型的水质识别率为99.38%,完全达到水质识别的要求。 展开更多
关键词 计量学 生物式水质监测 卷积神经网络 mask-RCNN图像分割法
下载PDF
Weakly- and Semi-Supervised Fast Region-Based CNN for Object Detection 被引量:1
7
作者 Xing-Gang Wang Jia-Si Wang +1 位作者 Peng Tang Wen-Yu Liu 《Journal of Computer Science & Technology》 SCIE EI CSCD 2019年第6期1269-1278,共10页
Learning an effective object detector with little supervision is an essential but challenging problem in computer vision applications. In this paper, we consider the problem of learning a deep convolutional neural net... Learning an effective object detector with little supervision is an essential but challenging problem in computer vision applications. In this paper, we consider the problem of learning a deep convolutional neural network (CNN) based object detector using weakly-supervised and semi-supervised information in the framework of fast region-based CNN (Fast R-CNN). The target is to obtain an object detector as accurate as the fully-supervised Fast R-CNN, but it requires less image annotation effort. To solve this problem, we use weakly-supervised training images (i.e., only the image-level annotation is given) and a few proportions of fully-supervised training images (i.e., the bounding box level annotation is given), that is a weakly-and semi-supervised (WASS) object detection setting. The proposed solution is termed as WASS R-CNN, in which there are two main components. At first, a weakly-supervised R-CNN is firstly trained;after that semi-supervised data are used for finetuning the weakly-supervised detector. We perform object detection experiments on the PASCAL VOC 2007 dataset. The proposed WASS R-CNN achieves more than 85% of a fully-supervised Fast R-CNN's performance (measured using mean average precision) with only 10%of fully-supervised annotations together with weak supervision for all training images. The results show that the proposed learning framework can significantly reduce the labeling efforts for obtaining reliable object detectors. 展开更多
关键词 object detection weakly-supervised LEARNING SEMI-SUPERVISED LEARNING FAST region-based convolutional NEURAL network (Fast r-cnn)
原文传递
基于图像的三维预测及其在水利枢纽中的应用 被引量:2
8
作者 马常霞 王文明 《中国科技论文》 CAS 北大核心 2021年第3期307-311,共5页
为了解决传统基于图像的三维重建中鲁棒性较差、信息获取效率低下的问题,使用了卷积神经网络(convolutional neural networks,CNN),将基于区域的掩模卷积网络(region-based convolutional network method,Mask R-CNN)和图卷积(graph con... 为了解决传统基于图像的三维重建中鲁棒性较差、信息获取效率低下的问题,使用了卷积神经网络(convolutional neural networks,CNN),将基于区域的掩模卷积网络(region-based convolutional network method,Mask R-CNN)和图卷积(graph convolutional network,GCN)联合实现三维重建,其中Mask R-CNN完成二维感知GCN实现三维形状推断,该方法不需要进行特征提取与匹配以及复杂的几何运算。通过实验验证了该方法的可行性,采用倒角距离(chamfer distance)及法向量距离作为评价指标与基线系统进行了比较,实验显示,倒角距离缩小了0.2~2.238,法向量距离增大了10.11~36.03,体现了优异性。以水利枢纽图作为实例进行三维重建,为稀疏信息及实例图的三维建模提供了新的思路。 展开更多
关键词 掩模卷积网络 图卷积 二维感知 三维预测 实例图
下载PDF
Marine target detection based on Marine-Faster R-CNN for navigation radar plane position indicator images 被引量:2
9
作者 Xiaolong CHEN Xiaoqian MU +2 位作者 Jian GUAN Ningbo LIU Wei ZHOU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2022年第4期630-643,共14页
As a classic deep learning target detection algorithm,Faster R-CNN(region convolutional neural network)has been widely used in high-resolution synthetic aperture radar(SAR)and inverse SAR(ISAR)image detection.However,... As a classic deep learning target detection algorithm,Faster R-CNN(region convolutional neural network)has been widely used in high-resolution synthetic aperture radar(SAR)and inverse SAR(ISAR)image detection.However,for most common low-resolution radar plane position indicator(PPI)images,it is difficult to achieve good performance.In this paper,taking navigation radar PPI images as an example,a marine target detection method based on the Marine-Faster R-CNN algorithm is proposed in the case of complex background(e.g.,sea clutter)and target characteristics.The method performs feature extraction and target recognition on PPI images generated by radar echoes with the convolutional neural network(CNN).First,to improve the accuracy of detecting marine targets and reduce the false alarm rate,Faster R-CNN was optimized as the Marine-Faster R-CNN in five respects:new backbone network,anchor size,dense target detection,data sample balance,and scale normalization.Then,JRC(Japan Radio Co.,Ltd.)navigation radar was used to collect echo data under different conditions to build a marine target dataset.Finally,comparisons with the classic Faster R-CNN method and the constant false alarm rate(CFAR)algorithm proved that the proposed method is more accurate and robust,has stronger generalization ability,and can be applied to the detection of marine targets for navigation radar.Its performance was tested with datasets from different observation conditions(sea states,radar parameters,and different targets). 展开更多
关键词 Marine target detection Navigation radar Plane position indicator(PPI)images convolutional neural network(CNN) Faster r-cnn(region convolutional neural network)method
原文传递
基于深度学习和灰度纹理特征的铁路接触网绝缘子状态检测 被引量:2
10
作者 姜香菊 杜晓亮 《光电子.激光》 CAS CSCD 北大核心 2022年第5期513-520,共8页
铁路接触网绝缘子状态检测对铁路行车安全有着重大的意义,为解决目前人工对绝缘子图像检测结果的不确定性,提出一种深度学习结合灰度纹理特征的检测方法。首先使用Faster R-CNN (faster region-based convolutional neural network)目... 铁路接触网绝缘子状态检测对铁路行车安全有着重大的意义,为解决目前人工对绝缘子图像检测结果的不确定性,提出一种深度学习结合灰度纹理特征的检测方法。首先使用Faster R-CNN (faster region-based convolutional neural network)目标检测算法对图像中绝缘子精确识别,再通过灰度共生矩阵对绝缘子纹理特征进行分析提取,之后结合支持向量机将绝缘子分为正常绝缘子和异常绝缘子,实验数据结果证明使用能量、熵、相关度3种纹理特征进行绝缘子状态分类时对实验数据中的正常状态绝缘子的分类精度可达100%,异常状态绝缘子的分类精度达97.5%,最后依据绝缘子图像灰度分布的周期性特点,利用灰度积分投影将异常绝缘子分为破损绝缘子和夹杂异物绝缘子。实验结果表明所提方法可以有效对绝缘子状态进行检测分类。 展开更多
关键词 绝缘子 Faster r-cnn(faster region-based convolutional neural network) 纹理特征 支持向量机
原文传递
基于膨胀卷积的多尺度焊缝缺陷检测算法 被引量:9
11
作者 谷静 吴怡宁 孟鑫昊 《光电子.激光》 CAS CSCD 北大核心 2022年第1期61-66,共6页
本文针对焊缝缺陷尺度变化不一导致的检测率效果不理想,提出了一种基于更快地区域卷积神经网络(faster region-based convolutional neural network, Faster R-CNN)对焊缝缺陷检测的改进算法。算法利用膨胀卷积在不同扩张率下进行特征融... 本文针对焊缝缺陷尺度变化不一导致的检测率效果不理想,提出了一种基于更快地区域卷积神经网络(faster region-based convolutional neural network, Faster R-CNN)对焊缝缺陷检测的改进算法。算法利用膨胀卷积在不同扩张率下进行特征融合,结合不同感受野下的卷积核更全面地提取不同尺度的特征信息,来提升目标的检测精度。同时利用深度可分离卷积,来对模型进行压缩,提高检测速度。实验表明,改进后的网络在保证运行速度的同时,能够提高检测速度,检测精度可以达到72%。 展开更多
关键词 焊缝缺陷检测 更快地区域卷积神经网络(faster region-based convolutional neural network Faster r-cnn) 特征融合 膨胀卷积
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部