This study examined the regional air sea coupled interaction in the South China Sea (SCS), based on the 1979-1995 NCEP/NCAR reanalysis data of sea surface temperature (SST) and meridional wind (V component). Singular ...This study examined the regional air sea coupled interaction in the South China Sea (SCS), based on the 1979-1995 NCEP/NCAR reanalysis data of sea surface temperature (SST) and meridional wind (V component). Singular value decomposition (SVD) and single field principal component analysis (PCA) were employed to analyse the SST and V anomalies and compare the results with each other. It was found that the leading mode of SVD explained a predominant amount of squared covariance between the SST and meridional wind V, and that the time series expansion coefficients of the first mode between SST and V from PCA and SVD resembled very much each other. This infers that the meridional wind, as an indicator of Asian monsoon, is closely related with the SST through the air sea interaction in the SCS. The spatial patterns of the first mode of SST and V exhibit ellipse shaped variance in the SCS center and a NE SW oriented main axis, which are much similar to those in winter season. These results show that the most active center for both V and SST is in the SCS, which suggests that a regional air sea coupled oscillation possibly exists there for the whole year and is noticeable especially during the winter season. So the SCS is a very important region for the forming of the Asian Monsoon and the climate of the west Pacific.展开更多
A regional air-sea coupled model, comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM) was developed to simulate summer climate features over East Asia in 2000. T...A regional air-sea coupled model, comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM) was developed to simulate summer climate features over East Asia in 2000. The sensitivity of the model's behavior to the coupling time interval (CTI), the causes of the sea surface temperature (SST) biases, and the role of air-sea interaction in the simulation of precipitation over China are investigated. Results show that the coupled model can basically produce the spatial pattern of SST, precipitation, and surface air temperature (SAT) with five different CTIs respectively. Also, using a CTI of 3, 6 or 12 hours tended to produce more successful simulations than if using 1 and 24 hours. Further analysis indicates that both a higher and lower coupling frequency result in larger model biases in air-sea heat flux exchanges, which might be responsible for the sensitivity of the coupled model's behavior to the CTI. Sensitivity experiments indicate that SST biases between the coupled and uncoupled POM occurring over the China coastal waters were due to the mismatch of the surface heat fluxes produced by the RIEMS with those required by the POM. In the coupled run, the air-sea feedbacks reduced the biases in surface heat fluxes, compared with the uncoupled RIEMS, consequently resulted in changes in thermal contrast over land and sea and led to a precipitation increase over South China and a decrease over North China. These results agree well observations in the summer of 2000.展开更多
The performance of a regional air-sea coupled model, comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM), in simulating the seasonal and intraseasonal variations...The performance of a regional air-sea coupled model, comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM), in simulating the seasonal and intraseasonal variations of East Asian summer monsoon (EASM) rainfall was investigated. Through comparisons of the model results among the coupled model, the uncoupled RIEMS, and observations, the impact of air-sea coupling on simulating the EASM was also evaluated. Results showed that the regional air sea coupled climate model performed better in simulating the spatial pattern of the precipitation climatology and produced more realistic variations of the EASM rainfall in terms of its amplitude and principal EOF modes. The coupled model also showed greater skill than the uncoupled RIEMS in reproducing the principal features of climatological intraseasonal oscillation (CISO) of EASM rainfall, including its dominant period, intensity, and northward propagation. Further analysis indicated that the improvements in the simulation of the EASM rainfall climatology and its seasonal variation in the coupled model were due to better simulation of the western North Pacific Subtropical High, while the improvements of CISO simulation were owing to the realistic phase relationship between the intraseasonal convection and the underlying SST resulting from the air-sea coupling.展开更多
Using the regional air-sea coupled climate model RegCM3-POM,a series of numerical experiments are performed to simulate the summer climate in 1997 and 1998 with different coupling time steps.The results show that the ...Using the regional air-sea coupled climate model RegCM3-POM,a series of numerical experiments are performed to simulate the summer climate in 1997 and 1998 with different coupling time steps.The results show that the coupled model has good performance on the simulation of the summer sea surface temperature(SST) in 1997 and 1998,and the simulation results of CPL1(with the coupling time step at 1 hour) are similar to those of CPL6(with the coupling time step at 6 hours).The coupled model can well simulate SST differences between 1997 and 1998.As for the simulation of the drought in 1997 and the flood in 1998,the results of CPL6 are more accurate.The coupled model can well simulate the drought in 1997 over North China,and compared with the results of the atmosphere model RegCM3,the simulation ability of the coupled model is improved.The coupling model has better ability in the simulation of the circulation in the middle and low levels,and the water vapor transportation in the coupling model is reasonable in both 1997 and 1998.RegCM3(an uncoupled model) cannot correctly simulate the transportation path differences between 1997 and 1998,but the coupled model can simulate the differences well.展开更多
The effects of air-sea coupling over the tropical Indian Ocean(TIO) on the eastward propagating boreal winter intraseasonal oscillation(MJO) are investigated by comparing a fully coupled and a partially decoupled ...The effects of air-sea coupling over the tropical Indian Ocean(TIO) on the eastward propagating boreal winter intraseasonal oscillation(MJO) are investigated by comparing a fully coupled and a partially decoupled Indian Ocean experiment using the SINTEX-F coupled model.Air-sea coupling over the TIO significantly enhances the intensity of the eastward propagations of the MJO along the5°-10°S zonal areas.The zonal asymmetry of the SST anomaly(SSTA) is responsible for the enhanced eastward propagation.A positive SSTA appears to the east of the MJO convection,which results in the boundary layer moisture convergence and positively feeds back to the MJO convection.In addition,the air-sea interaction effect on the eastward propagation of the MJO is related to the interannual variations of the TIO.Air-sea coupling enhances(reduces) the eastward-propagating spectrum during the negative Indian Ocean dipole mode and positive Indian Ocean basin mode.Such phase dependence is attributed to the role of the background mean westerly in affecting the wind-evaporation-SST feedback.Air-sea coupling(decoupling) enhances(reduces) the zonal asymmetry of the low-level specific humidity,and thus the eastward propagation spectrum of the MJO.展开更多
A simple air-sea coupled model, the atmospheric general circulation model (AGCM) of the National Centers for Environmental Prediction coupled to a mixed-layer slab ocean model, is employed to investigate the impact ...A simple air-sea coupled model, the atmospheric general circulation model (AGCM) of the National Centers for Environmental Prediction coupled to a mixed-layer slab ocean model, is employed to investigate the impact of air-sea coupling on the signals of the Atlantic Multidecadal Oscillation (AMO). A regional coupling strategy is applied, in which coupling is switched off in the extratropical North Atlantic Ocean but switched on in the open oceans elsewhere. The coupled model is forced with warm-phase AMO SST anomalies, and the modeled responses are compared with those from parallel uncoupled AGCM experiments with the same SST forcing. The results suggest that the regionally coupled responses not only resemble the AGCM simulation, but also have a stronger intensity. In comparison, the coupled responses bear greater similarity to the observational composite anomaly. Thus, air-sea coupling enhances the responses of the East Asian winter climate to the AMO. To determine the mechanism responsible for the coupling amplification, an additional set of AGCM experiments, forced with the AMO-induced tropical SST anomalies, is conducted. The SST anomalies are extracted from the simulated AMO-induced SST response in the regionally coupled model. The results suggest that the SST anomalies contribute to the coupling amplification. Thus, tropical air-sea coupling feedback tends to enhance the responses of the East Asian winter climate to the AMO.展开更多
This study presents the spatial and temporal structures of the decadal variability of the Pacific from an extended control run of a coupled global climate model (GCM).The GCM used was version-g2.0 of the Flexible Glob...This study presents the spatial and temporal structures of the decadal variability of the Pacific from an extended control run of a coupled global climate model (GCM).The GCM used was version-g2.0 of the Flexible Global Ocean Atmosphere Land System (FGOALS-g2.0) developed at LASG/IAP.The GCM FGOALS-g2.0 re-produces similar spatial-temporal structures of sea surface temperature (SST) as observed in the Pacific decadal os-cillation (PDO) with a significant period of approximately 14 years.Correspondingly,the PDO signals were closely related to the decadal change both in the upper-ocean temperature anomalies and in the atmospheric circulation.The present results suggest that warm SST anomalies along the equator relax the trade winds,causing the SSTs to warm even more in the eastern equatorial Pacific,which is a positive feedback.Meanwhile,warm SST anomalies along the equator force characteristic off-equa-torial wind stress curl anomalies,inducing much more poleward transport of heat,which is a negative feedback.The upper-ocean meridional heat transport,which is asso-ciated with the PDO phase transition,links the equatorial to the off-equatorial Pacific Ocean,acting as a major mechanism responsible for the tropical Pacific decadal variations.Therefore,the positive and negative feedbacks working together eventually result in the decadal oscilla-tion in the Pacific.展开更多
Analysis of COADS data(1958- 1987) showed that there is obviously interannual SST oscillation including QBO (Quasi-biennial oscillation ) and quasi-3.5 year oscilation , etc ., of the SCS (South China Sea), which is t...Analysis of COADS data(1958- 1987) showed that there is obviously interannual SST oscillation including QBO (Quasi-biennial oscillation ) and quasi-3.5 year oscilation , etc ., of the SCS (South China Sea), which is the response of the the upper mixed layer of the sea to the impact of the East Asian Monsoon anomaly . Most SST anomalies appear in the central basin of the SCS.The phase-locked phenomena linking the SST annual cycle and interannual oscillation in an important characteristic of the SCS climate . There is not only SST response to atmospheric impact , but also feedback to the air . The authors put forward a scheme of regional air-sea interaction in winter time in the SCS.展开更多
In this paper,we first briefly review the history of air-sea coupled models,and then introduce the current status and recent advances of regional air-sea coupled models.In particular,we discuss the core technical and ...In this paper,we first briefly review the history of air-sea coupled models,and then introduce the current status and recent advances of regional air-sea coupled models.In particular,we discuss the core technical and scientific issues involved in the development of regional coupled models,including the coupling technique,lateral boundary conditions,the coupling with sea waves(ices),and data assimilation.Furthermore,we introduce the application of regional coupled models in numerical simulation and dynamical downscaling.Finally,we discuss the existing problems and future directions in the development of regional air-sea coupled models.展开更多
A coupled regional air-sea model is developed by using the regional climate model (P-σ RCM) and the regional ocean model (POM),which is used to simulate East Asian monsoon and oceanic elements in East Asian coastal w...A coupled regional air-sea model is developed by using the regional climate model (P-σ RCM) and the regional ocean model (POM),which is used to simulate East Asian monsoon and oceanic elements in East Asian coastal waters.The simulated surface layer oceanic elements are basically consistent with the reality and can reflect the interaction between the monsoon and the surface layer currents.The great difference with the reality is “cold drift” of the simulated surface temperature.The coupled model has certain ability to simulate the atmosphere geopotential height fields,precipitation and low-level southwest wind from May to August in 1998.It can display the process of summer monsoon onset during the third dekad of May and the evolution features after the onset.The differences between the simulation results of the coupled model and that of the single P-a RCM are shown mainly in the low-level atmosphere and the model internal regions.展开更多
A regional air-sea coupled model based on the regional climate model(RegCM3) and the regional oceanic model POM(Princeton Ocean Model) is developed and a series of experiments are performed to verify the ability o...A regional air-sea coupled model based on the regional climate model(RegCM3) and the regional oceanic model POM(Princeton Ocean Model) is developed and a series of experiments are performed to verify the ability of the coupled model in simulating the summer precipitation over China from 1963 to 2002.The results show that the space correlation coefficients between the GISST(Global Ice and Sea Surface Temperature) data and the simulated SST by RegCM3-POM exceed 0.9.Compared with the uncoupled experiments,the coupled model RegCM3-POM has a better performance in simulating the mean summer(June to August) precipitation over China,and the distribution of the rainband in the coupled model is more accurate.The improvement of the rainfall simulation is significant over the Yangtze River Valley and in South China.The rainbelt intraseasonal evolution over eastern China in summer indicates that the simulation ability of RegCM3-POM is improved in comparison with the uncoupled model.The interannual summer rainfall variation over eastern China simulated by RegCM3-POM is in accordance with observation,while the spatial pattern of the interannual summer rainfall variation in the uncoupled model is inaccurate.The simulated correlation coefficient between the summer rainfall in the uncoupled model RegCM3 and observation is 0.30 over the Yangtze River Valley and 0.29 in South China.The coefficient between the rainfall in the coupled RegCM3-POM and observation is 0.48 over the Yangtze River Valley and 0.61 in South China.The RegCM3-POM has successfully simulated the correlation coefficients between summer rainfall in the Yangtze River Valley and SST anomalies of the Bay of Bengal,South China Sea,and the Kuroshio area,whereas the uncoupled model RegCM3 fails to reproduce this relationship.The study further shows that the monsoon circulation and the path of the moisture transport flux simulated by RegCM3-POM are in good agreement with the NCEP/NCAR data.展开更多
The Coupled Model Intercomparison Project (CMIP) is an international community-based infrastructure that supports climate model intercomparison, climate variability, climate prediction, and climate projection. Impro...The Coupled Model Intercomparison Project (CMIP) is an international community-based infrastructure that supports climate model intercomparison, climate variability, climate prediction, and climate projection. Improving the performance of climate models over East Asia and the western North Pacific has been a challenge for the climate-modeling community. In this paper, we provide a synthesis robustness analysis of the climate models participating in CMIP-Phase 5 (CMIP5). The strengths and weaknesses of the CMIP5 models are assessed from the perspective of climate mean state, interannual variability, past climate change during the mid-Pliocene (MP) and the last millennium, and climate projection. The added values of regional climate models relative to the driving global climate models are also assessed. Although an encouraging increase in credibility and an improvement in the simulation of mean states, interannual variability, and past climate changes are visible in the progression from CMIP3 to CMIPS, some previously noticed biases such as the ridge position of the western North Pacific subtropical high and the associated rainfall bias are still evident in CMIP5 models. Weaknesses are also evident in simulations of the interannual amplitude, such as El Nino- Southern Oscillation (ENSO)-monsoon relationships. Coupled models generally show better results than standalone atmospheric models in simulating both mean states and interannual variability. Multi-model intercomparison indicates significant uncertainties in the future projection of climate change, although precipitation increases consistently across models constrained by the Clausius-Clapeyron relation. Regional ocean-atmosphere coupled models are recommended for the dynamical downscaling of climate change oroiections over the East Asia-western North Pacific domain.展开更多
Using the sea surface temperature and wind anomalies(SSTA and SSWA for short)of the tropical Pacific from January 1970 to December 1989,main spatial patterns of tropical Pacific SSTA and SSWA coupling features in the ...Using the sea surface temperature and wind anomalies(SSTA and SSWA for short)of the tropical Pacific from January 1970 to December 1989,main spatial patterns of tropical Pacific SSTA and SSWA coupling features in the transform course from the warm phase to the cold phase of El Nino-southern Oscillation(ENSO)cycles are discussed. The main conclusions are as follows:(1)air-sea coupling patterns at the mature stage of El Nino(La Nina)are main spatial ones of tropical Pacific SSWA and SSTA coupling:(2)at the mature stage of El Nino,the interaction of the anticyclonic anomaly wind,generated by the forcing of distinct meridional SSTA gradient in the Northern Hemisphere tropical central Pacific.with the California cold current and SSTA is mainly responsible for weakening of El Nino;(3)the second sea temperature increase along the South American coast in the decaying course of El Nino results from the eastward movement of the weakened positive SSTA in the tropical central-eastern Pacific forced by anomalous west wind stress:(4)La Nina results from the joint effect of Walker circulation,Ekman drift and negative SSTA in the tropical central-eastern Pacific.展开更多
In this paper we document the correlationship between sea surface temperature (SST) and low level-winds such as sea level wind and 850 hPa wind in the South China Sea (SCS) based on COADS (1958—1987) and ECMWF object...In this paper we document the correlationship between sea surface temperature (SST) and low level-winds such as sea level wind and 850 hPa wind in the South China Sea (SCS) based on COADS (1958—1987) and ECMWF objective analysis data (1973—1986).Further statistical analyses tell us that there is a fixed SCS basin mode for variations both of SST and low-level winds in the region on the interannual time scale due to air-sea interactions. A simplified,coupled model that is designed following the McCreary and Anderson's (1985) model and includes the feedback between the upper ocean and the circulation of East Asian monsoon demonstrates an interannual oscillation in the coupled air-sea system,which is similar to the observations in the SCS.展开更多
文摘This study examined the regional air sea coupled interaction in the South China Sea (SCS), based on the 1979-1995 NCEP/NCAR reanalysis data of sea surface temperature (SST) and meridional wind (V component). Singular value decomposition (SVD) and single field principal component analysis (PCA) were employed to analyse the SST and V anomalies and compare the results with each other. It was found that the leading mode of SVD explained a predominant amount of squared covariance between the SST and meridional wind V, and that the time series expansion coefficients of the first mode between SST and V from PCA and SVD resembled very much each other. This infers that the meridional wind, as an indicator of Asian monsoon, is closely related with the SST through the air sea interaction in the SCS. The spatial patterns of the first mode of SST and V exhibit ellipse shaped variance in the SCS center and a NE SW oriented main axis, which are much similar to those in winter season. These results show that the most active center for both V and SST is in the SCS, which suggests that a regional air sea coupled oscillation possibly exists there for the whole year and is noticeable especially during the winter season. So the SCS is a very important region for the forming of the Asian Monsoon and the climate of the west Pacific.
基金supported by the National Basic Research Program under Grand No.2006CB400506
文摘A regional air-sea coupled model, comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM) was developed to simulate summer climate features over East Asia in 2000. The sensitivity of the model's behavior to the coupling time interval (CTI), the causes of the sea surface temperature (SST) biases, and the role of air-sea interaction in the simulation of precipitation over China are investigated. Results show that the coupled model can basically produce the spatial pattern of SST, precipitation, and surface air temperature (SAT) with five different CTIs respectively. Also, using a CTI of 3, 6 or 12 hours tended to produce more successful simulations than if using 1 and 24 hours. Further analysis indicates that both a higher and lower coupling frequency result in larger model biases in air-sea heat flux exchanges, which might be responsible for the sensitivity of the coupled model's behavior to the CTI. Sensitivity experiments indicate that SST biases between the coupled and uncoupled POM occurring over the China coastal waters were due to the mismatch of the surface heat fluxes produced by the RIEMS with those required by the POM. In the coupled run, the air-sea feedbacks reduced the biases in surface heat fluxes, compared with the uncoupled RIEMS, consequently resulted in changes in thermal contrast over land and sea and led to a precipitation increase over South China and a decrease over North China. These results agree well observations in the summer of 2000.
基金the National Natural Science Foundation of China,the National Basic Research Program of China (973 Program)
文摘The performance of a regional air-sea coupled model, comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM), in simulating the seasonal and intraseasonal variations of East Asian summer monsoon (EASM) rainfall was investigated. Through comparisons of the model results among the coupled model, the uncoupled RIEMS, and observations, the impact of air-sea coupling on simulating the EASM was also evaluated. Results showed that the regional air sea coupled climate model performed better in simulating the spatial pattern of the precipitation climatology and produced more realistic variations of the EASM rainfall in terms of its amplitude and principal EOF modes. The coupled model also showed greater skill than the uncoupled RIEMS in reproducing the principal features of climatological intraseasonal oscillation (CISO) of EASM rainfall, including its dominant period, intensity, and northward propagation. Further analysis indicated that the improvements in the simulation of the EASM rainfall climatology and its seasonal variation in the coupled model were due to better simulation of the western North Pacific Subtropical High, while the improvements of CISO simulation were owing to the realistic phase relationship between the intraseasonal convection and the underlying SST resulting from the air-sea coupling.
基金Natural Science Foundation for Young Scientist (40805047,41105058,40805039)Foundation project of Nanjing University of Information Science & Technology (20070100)Priority Academic Program Development of Jiangsu Province Higher Education Institutions (PAPD)
文摘Using the regional air-sea coupled climate model RegCM3-POM,a series of numerical experiments are performed to simulate the summer climate in 1997 and 1998 with different coupling time steps.The results show that the coupled model has good performance on the simulation of the summer sea surface temperature(SST) in 1997 and 1998,and the simulation results of CPL1(with the coupling time step at 1 hour) are similar to those of CPL6(with the coupling time step at 6 hours).The coupled model can well simulate SST differences between 1997 and 1998.As for the simulation of the drought in 1997 and the flood in 1998,the results of CPL6 are more accurate.The coupled model can well simulate the drought in 1997 over North China,and compared with the results of the atmosphere model RegCM3,the simulation ability of the coupled model is improved.The coupling model has better ability in the simulation of the circulation in the middle and low levels,and the water vapor transportation in the coupling model is reasonable in both 1997 and 1998.RegCM3(an uncoupled model) cannot correctly simulate the transportation path differences between 1997 and 1998,but the coupled model can simulate the differences well.
基金supported by the National Basic Research Program of China[grant number 2014CB953901],support from the National Basic Research Program of China[grant number 2015CB453200]the National Natural Science Foundation of China[grant numbers 41675096,41575043,41375095,and 41505067],the National Natural Science Foundation of China[grant numbers 41475084 and 41630423]
文摘The effects of air-sea coupling over the tropical Indian Ocean(TIO) on the eastward propagating boreal winter intraseasonal oscillation(MJO) are investigated by comparing a fully coupled and a partially decoupled Indian Ocean experiment using the SINTEX-F coupled model.Air-sea coupling over the TIO significantly enhances the intensity of the eastward propagations of the MJO along the5°-10°S zonal areas.The zonal asymmetry of the SST anomaly(SSTA) is responsible for the enhanced eastward propagation.A positive SSTA appears to the east of the MJO convection,which results in the boundary layer moisture convergence and positively feeds back to the MJO convection.In addition,the air-sea interaction effect on the eastward propagation of the MJO is related to the interannual variations of the TIO.Air-sea coupling enhances(reduces) the eastward-propagating spectrum during the negative Indian Ocean dipole mode and positive Indian Ocean basin mode.Such phase dependence is attributed to the role of the background mean westerly in affecting the wind-evaporation-SST feedback.Air-sea coupling(decoupling) enhances(reduces) the zonal asymmetry of the low-level specific humidity,and thus the eastward propagation spectrum of the MJO.
基金supported by the strategic project of the Chinese Academy of Sciences(Grant No.XDA11010406)the National Natural Science Foundation of China (Grant Nos.41375085 and 41421004)
文摘A simple air-sea coupled model, the atmospheric general circulation model (AGCM) of the National Centers for Environmental Prediction coupled to a mixed-layer slab ocean model, is employed to investigate the impact of air-sea coupling on the signals of the Atlantic Multidecadal Oscillation (AMO). A regional coupling strategy is applied, in which coupling is switched off in the extratropical North Atlantic Ocean but switched on in the open oceans elsewhere. The coupled model is forced with warm-phase AMO SST anomalies, and the modeled responses are compared with those from parallel uncoupled AGCM experiments with the same SST forcing. The results suggest that the regionally coupled responses not only resemble the AGCM simulation, but also have a stronger intensity. In comparison, the coupled responses bear greater similarity to the observational composite anomaly. Thus, air-sea coupling enhances the responses of the East Asian winter climate to the AMO. To determine the mechanism responsible for the coupling amplification, an additional set of AGCM experiments, forced with the AMO-induced tropical SST anomalies, is conducted. The SST anomalies are extracted from the simulated AMO-induced SST response in the regionally coupled model. The results suggest that the SST anomalies contribute to the coupling amplification. Thus, tropical air-sea coupling feedback tends to enhance the responses of the East Asian winter climate to the AMO.
基金supported by the National Basic Research Program of China (973 program,Grant No.2010CB950502)the National Natural Science Foundation of China (Grant Nos.40975065 and 40821092)
文摘This study presents the spatial and temporal structures of the decadal variability of the Pacific from an extended control run of a coupled global climate model (GCM).The GCM used was version-g2.0 of the Flexible Global Ocean Atmosphere Land System (FGOALS-g2.0) developed at LASG/IAP.The GCM FGOALS-g2.0 re-produces similar spatial-temporal structures of sea surface temperature (SST) as observed in the Pacific decadal os-cillation (PDO) with a significant period of approximately 14 years.Correspondingly,the PDO signals were closely related to the decadal change both in the upper-ocean temperature anomalies and in the atmospheric circulation.The present results suggest that warm SST anomalies along the equator relax the trade winds,causing the SSTs to warm even more in the eastern equatorial Pacific,which is a positive feedback.Meanwhile,warm SST anomalies along the equator force characteristic off-equa-torial wind stress curl anomalies,inducing much more poleward transport of heat,which is a negative feedback.The upper-ocean meridional heat transport,which is asso-ciated with the PDO phase transition,links the equatorial to the off-equatorial Pacific Ocean,acting as a major mechanism responsible for the tropical Pacific decadal variations.Therefore,the positive and negative feedbacks working together eventually result in the decadal oscilla-tion in the Pacific.
文摘Analysis of COADS data(1958- 1987) showed that there is obviously interannual SST oscillation including QBO (Quasi-biennial oscillation ) and quasi-3.5 year oscilation , etc ., of the SCS (South China Sea), which is the response of the the upper mixed layer of the sea to the impact of the East Asian Monsoon anomaly . Most SST anomalies appear in the central basin of the SCS.The phase-locked phenomena linking the SST annual cycle and interannual oscillation in an important characteristic of the SCS climate . There is not only SST response to atmospheric impact , but also feedback to the air . The authors put forward a scheme of regional air-sea interaction in winter time in the SCS.
基金supported by Knowledge Innovation Program of Chinese Academy of Sciences (Grant Nos. KZCX2-EW-208 and KZCX2-YW-Q11-02)the MOST of China (Grant No. 2011CB403504)National Natural Science Foundation of China (Grant No. 41076009)
文摘In this paper,we first briefly review the history of air-sea coupled models,and then introduce the current status and recent advances of regional air-sea coupled models.In particular,we discuss the core technical and scientific issues involved in the development of regional coupled models,including the coupling technique,lateral boundary conditions,the coupling with sea waves(ices),and data assimilation.Furthermore,we introduce the application of regional coupled models in numerical simulation and dynamical downscaling.Finally,we discuss the existing problems and future directions in the development of regional air-sea coupled models.
基金This work is supported by the South China Sea Monsoon Experiment(SCSMEX)the National Natural Science Foundation of China under the Grants 49735170.
文摘A coupled regional air-sea model is developed by using the regional climate model (P-σ RCM) and the regional ocean model (POM),which is used to simulate East Asian monsoon and oceanic elements in East Asian coastal waters.The simulated surface layer oceanic elements are basically consistent with the reality and can reflect the interaction between the monsoon and the surface layer currents.The great difference with the reality is “cold drift” of the simulated surface temperature.The coupled model has certain ability to simulate the atmosphere geopotential height fields,precipitation and low-level southwest wind from May to August in 1998.It can display the process of summer monsoon onset during the third dekad of May and the evolution features after the onset.The differences between the simulation results of the coupled model and that of the single P-a RCM are shown mainly in the low-level atmosphere and the model internal regions.
基金Supported by the National Natural Science Foundation of China under Grant No. 40805047
文摘A regional air-sea coupled model based on the regional climate model(RegCM3) and the regional oceanic model POM(Princeton Ocean Model) is developed and a series of experiments are performed to verify the ability of the coupled model in simulating the summer precipitation over China from 1963 to 2002.The results show that the space correlation coefficients between the GISST(Global Ice and Sea Surface Temperature) data and the simulated SST by RegCM3-POM exceed 0.9.Compared with the uncoupled experiments,the coupled model RegCM3-POM has a better performance in simulating the mean summer(June to August) precipitation over China,and the distribution of the rainband in the coupled model is more accurate.The improvement of the rainfall simulation is significant over the Yangtze River Valley and in South China.The rainbelt intraseasonal evolution over eastern China in summer indicates that the simulation ability of RegCM3-POM is improved in comparison with the uncoupled model.The interannual summer rainfall variation over eastern China simulated by RegCM3-POM is in accordance with observation,while the spatial pattern of the interannual summer rainfall variation in the uncoupled model is inaccurate.The simulated correlation coefficient between the summer rainfall in the uncoupled model RegCM3 and observation is 0.30 over the Yangtze River Valley and 0.29 in South China.The coefficient between the rainfall in the coupled RegCM3-POM and observation is 0.48 over the Yangtze River Valley and 0.61 in South China.The RegCM3-POM has successfully simulated the correlation coefficients between summer rainfall in the Yangtze River Valley and SST anomalies of the Bay of Bengal,South China Sea,and the Kuroshio area,whereas the uncoupled model RegCM3 fails to reproduce this relationship.The study further shows that the monsoon circulation and the path of the moisture transport flux simulated by RegCM3-POM are in good agreement with the NCEP/NCAR data.
基金This work is jointly supported by the National Natural Science Foundation of China (41420104006 and 41330423), and by the R&D Special Fund for Public Welfare Industry (Meteorology) (GYHY201506012).
文摘The Coupled Model Intercomparison Project (CMIP) is an international community-based infrastructure that supports climate model intercomparison, climate variability, climate prediction, and climate projection. Improving the performance of climate models over East Asia and the western North Pacific has been a challenge for the climate-modeling community. In this paper, we provide a synthesis robustness analysis of the climate models participating in CMIP-Phase 5 (CMIP5). The strengths and weaknesses of the CMIP5 models are assessed from the perspective of climate mean state, interannual variability, past climate change during the mid-Pliocene (MP) and the last millennium, and climate projection. The added values of regional climate models relative to the driving global climate models are also assessed. Although an encouraging increase in credibility and an improvement in the simulation of mean states, interannual variability, and past climate changes are visible in the progression from CMIP3 to CMIPS, some previously noticed biases such as the ridge position of the western North Pacific subtropical high and the associated rainfall bias are still evident in CMIP5 models. Weaknesses are also evident in simulations of the interannual amplitude, such as El Nino- Southern Oscillation (ENSO)-monsoon relationships. Coupled models generally show better results than standalone atmospheric models in simulating both mean states and interannual variability. Multi-model intercomparison indicates significant uncertainties in the future projection of climate change, although precipitation increases consistently across models constrained by the Clausius-Clapeyron relation. Regional ocean-atmosphere coupled models are recommended for the dynamical downscaling of climate change oroiections over the East Asia-western North Pacific domain.
基金This work was supported by the National Natural Science Foundation of China under the Grants 49375242.
文摘Using the sea surface temperature and wind anomalies(SSTA and SSWA for short)of the tropical Pacific from January 1970 to December 1989,main spatial patterns of tropical Pacific SSTA and SSWA coupling features in the transform course from the warm phase to the cold phase of El Nino-southern Oscillation(ENSO)cycles are discussed. The main conclusions are as follows:(1)air-sea coupling patterns at the mature stage of El Nino(La Nina)are main spatial ones of tropical Pacific SSWA and SSTA coupling:(2)at the mature stage of El Nino,the interaction of the anticyclonic anomaly wind,generated by the forcing of distinct meridional SSTA gradient in the Northern Hemisphere tropical central Pacific.with the California cold current and SSTA is mainly responsible for weakening of El Nino;(3)the second sea temperature increase along the South American coast in the decaying course of El Nino results from the eastward movement of the weakened positive SSTA in the tropical central-eastern Pacific forced by anomalous west wind stress:(4)La Nina results from the joint effect of Walker circulation,Ekman drift and negative SSTA in the tropical central-eastern Pacific.
基金This work is supported by the National Natural Science Foundation of ChinaClimate Laboratory for Climate Studies of China Meteorological Administration.
文摘In this paper we document the correlationship between sea surface temperature (SST) and low level-winds such as sea level wind and 850 hPa wind in the South China Sea (SCS) based on COADS (1958—1987) and ECMWF objective analysis data (1973—1986).Further statistical analyses tell us that there is a fixed SCS basin mode for variations both of SST and low-level winds in the region on the interannual time scale due to air-sea interactions. A simplified,coupled model that is designed following the McCreary and Anderson's (1985) model and includes the feedback between the upper ocean and the circulation of East Asian monsoon demonstrates an interannual oscillation in the coupled air-sea system,which is similar to the observations in the SCS.