By using 11 global ocean tide models and tidal gauge data obtained in the East China Sea and South China Sea, the influence of the ocean loading on gravity field in China and its neighbor area is calculated in this pa...By using 11 global ocean tide models and tidal gauge data obtained in the East China Sea and South China Sea, the influence of the ocean loading on gravity field in China and its neighbor area is calculated in this paper. Furthermore, the differences between the results from original global models and modified models with local tides are discussed based on above calculation. The comparison shows that the differences at the position near the sea are so large that the local tides must be taken into account in the calculation. When the global ocean tide models of CSR4.0, FES02, GOT00, NAO99 and ORI96 are chosen, the local effect for M2 is less than 0.10 × 10-8 m·s-2 over the area far away from sea. And the local effect for O1 is less than 0.05 × 10-8 m·s-2 over that area when choosing AG95 or CSR3.0 models. This numerical result demonstrates that the choice of model is a complex problem because of the inconsistent accuracy of the models over the areas of East and South China Seas.展开更多
The performance of a z-level ocean model, the Modular Ocean Model Version 4(MOM4), is evaluated in terms of simulating the global tide with different horizontal resolutions commonly used by climate models. The perfo...The performance of a z-level ocean model, the Modular Ocean Model Version 4(MOM4), is evaluated in terms of simulating the global tide with different horizontal resolutions commonly used by climate models. The performance using various sets of model topography is evaluated. The results show that the optimum filter radius can improve the simulated co-tidal phase and that better topography quality can lead to smaller rootmean square(RMS) error in simulated tides. Sensitivity experiments are conducted to test the impact of spatial resolutions. It is shown that the model results are sensitive to horizontal resolutions. The calculated absolute mean errors of the co-tidal phase show that simulations with horizontal resolutions of 0.5° and 0.25° have about 35.5% higher performance compared that with 1° model resolution. An internal tide drag parameterization is adopted to reduce large system errors in the tidal amplitude. The RMS error of the best tuned 0.25° model compared with the satellite-altimetry-constrained model TPXO7.2 is 8.5 cm for M_2. The tidal energy fluxes of M_2 and K_1 are calculated and their patterns are in good agreement with those from the TPXO7.2. The correlation coefficients of the tidal energy fluxes can be used as an important index to evaluate a model skill.展开更多
Previous studies show that the calculated loading effects from global ocean tide models do not match actual measurements of gravity attraction and loading effects in Southeast Asia.In this paper,taking advantage of a ...Previous studies show that the calculated loading effects from global ocean tide models do not match actual measurements of gravity attraction and loading effects in Southeast Asia.In this paper,taking advantage of a unique network of gravity tidal stations all over the Chinese mainland,we compare the observed and modeled tidal loading effects on the basis of the most recent global ocean tide models.The results show that the average efficiencies of the ocean tidal loading correction for O_(1),K_(1),M_(2) are 77%,7 s3%and 59%,respectively.The loading correction efficiencies using recent ocean tidal models are better than the 40 years old Schwiderskis model at coastal stations,but relative worse at stations far from ocean.展开更多
利用CRU(Climatic Research Unit)高分辨率观测数据及云南省124站资料,检验了参与IPCC AR5(政府间气候变化专门委员会第5次评估报告)的7个全球海气耦合模式(Coupled Model Intercomparison Program 5, CMIP5)及模式集合平均对...利用CRU(Climatic Research Unit)高分辨率观测数据及云南省124站资料,检验了参与IPCC AR5(政府间气候变化专门委员会第5次评估报告)的7个全球海气耦合模式(Coupled Model Intercomparison Program 5, CMIP5)及模式集合平均对云南及周边地区气温和降水的模拟性能,同时进行该区域不同温室气体排放量情景下2006~2055年的气候预估。结果表明:全球海气耦合模式对该区域气温和降水气候场空间分布、气温的线性趋势和春、夏季降水的年代际振荡特征具有一定的模拟能力,且模式集合能力优于单一模式,气温模拟优于降水模拟,但春、夏季的降水好于其他季节,使得全年的总降水好于秋、冬两季。对未来情景预估表明,研究区域未来50年气温呈现显著的线性上升趋势,降水量保持年代际振荡特征并有所增加,2020年之前我国云南及其南部区域将经历相对的干旱时期。展开更多
介绍TPXO、FES、Chinatide、MIKE Global Tide、Utide等典型海潮模型,总结归纳其同化潮汐数据来源和最新的海洋地形数据,利用我国沿岸长期验潮站以外的26个中短期潮位观测站评估TPXO等海潮模型预报精度。结果表明,全球海潮模型对我国沿...介绍TPXO、FES、Chinatide、MIKE Global Tide、Utide等典型海潮模型,总结归纳其同化潮汐数据来源和最新的海洋地形数据,利用我国沿岸长期验潮站以外的26个中短期潮位观测站评估TPXO等海潮模型预报精度。结果表明,全球海潮模型对我国沿海M_2分潮的预报精度普遍较低,且主导了几种海潮模型在中国海域的整体预报精度;相比MIKE Global Tide和TPXO7.2,TPXO8、TPXO_Yellow Sea 2010和TPXO_China&Ind模型在我国沿海的预报精度更高。展开更多
基金The Key Knowledge Innovation Project (KZCX3-SW-131), the Hundred Talents Program of Chinese Academy of Sciences and the National Natural Science Foundation of China (40374029)
文摘By using 11 global ocean tide models and tidal gauge data obtained in the East China Sea and South China Sea, the influence of the ocean loading on gravity field in China and its neighbor area is calculated in this paper. Furthermore, the differences between the results from original global models and modified models with local tides are discussed based on above calculation. The comparison shows that the differences at the position near the sea are so large that the local tides must be taken into account in the calculation. When the global ocean tide models of CSR4.0, FES02, GOT00, NAO99 and ORI96 are chosen, the local effect for M2 is less than 0.10 × 10-8 m·s-2 over the area far away from sea. And the local effect for O1 is less than 0.05 × 10-8 m·s-2 over that area when choosing AG95 or CSR3.0 models. This numerical result demonstrates that the choice of model is a complex problem because of the inconsistent accuracy of the models over the areas of East and South China Seas.
基金The National Natural Science Foundation of China(NSFC)-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406404the National Natural Science Foundation of China under contract No.41406027+1 种基金the National Basic Research Program(973 Program)of China under contract No.2010CB950300the Project of Comprehensive Evaluation of Polar Areas on Global and Regional Climate Changes under contract No.CHINARE04-04
文摘The performance of a z-level ocean model, the Modular Ocean Model Version 4(MOM4), is evaluated in terms of simulating the global tide with different horizontal resolutions commonly used by climate models. The performance using various sets of model topography is evaluated. The results show that the optimum filter radius can improve the simulated co-tidal phase and that better topography quality can lead to smaller rootmean square(RMS) error in simulated tides. Sensitivity experiments are conducted to test the impact of spatial resolutions. It is shown that the model results are sensitive to horizontal resolutions. The calculated absolute mean errors of the co-tidal phase show that simulations with horizontal resolutions of 0.5° and 0.25° have about 35.5% higher performance compared that with 1° model resolution. An internal tide drag parameterization is adopted to reduce large system errors in the tidal amplitude. The RMS error of the best tuned 0.25° model compared with the satellite-altimetry-constrained model TPXO7.2 is 8.5 cm for M_2. The tidal energy fluxes of M_2 and K_1 are calculated and their patterns are in good agreement with those from the TPXO7.2. The correlation coefficients of the tidal energy fluxes can be used as an important index to evaluate a model skill.
基金funded by The National Natural Science Foundation of China(No.41774015,41704135 and U1939204)National Key Research and Development Project of China(No.2018YFE0206100,2017YFC1500204)。
文摘Previous studies show that the calculated loading effects from global ocean tide models do not match actual measurements of gravity attraction and loading effects in Southeast Asia.In this paper,taking advantage of a unique network of gravity tidal stations all over the Chinese mainland,we compare the observed and modeled tidal loading effects on the basis of the most recent global ocean tide models.The results show that the average efficiencies of the ocean tidal loading correction for O_(1),K_(1),M_(2) are 77%,7 s3%and 59%,respectively.The loading correction efficiencies using recent ocean tidal models are better than the 40 years old Schwiderskis model at coastal stations,but relative worse at stations far from ocean.
文摘利用CRU(Climatic Research Unit)高分辨率观测数据及云南省124站资料,检验了参与IPCC AR5(政府间气候变化专门委员会第5次评估报告)的7个全球海气耦合模式(Coupled Model Intercomparison Program 5, CMIP5)及模式集合平均对云南及周边地区气温和降水的模拟性能,同时进行该区域不同温室气体排放量情景下2006~2055年的气候预估。结果表明:全球海气耦合模式对该区域气温和降水气候场空间分布、气温的线性趋势和春、夏季降水的年代际振荡特征具有一定的模拟能力,且模式集合能力优于单一模式,气温模拟优于降水模拟,但春、夏季的降水好于其他季节,使得全年的总降水好于秋、冬两季。对未来情景预估表明,研究区域未来50年气温呈现显著的线性上升趋势,降水量保持年代际振荡特征并有所增加,2020年之前我国云南及其南部区域将经历相对的干旱时期。
文摘介绍TPXO、FES、Chinatide、MIKE Global Tide、Utide等典型海潮模型,总结归纳其同化潮汐数据来源和最新的海洋地形数据,利用我国沿岸长期验潮站以外的26个中短期潮位观测站评估TPXO等海潮模型预报精度。结果表明,全球海潮模型对我国沿海M_2分潮的预报精度普遍较低,且主导了几种海潮模型在中国海域的整体预报精度;相比MIKE Global Tide和TPXO7.2,TPXO8、TPXO_Yellow Sea 2010和TPXO_China&Ind模型在我国沿海的预报精度更高。