To upscale the genetic parameters of CERES-Rice in regional applications, Jiangsu Province, the second largest rice producing province in China, was taken as an example. The province was divided into four rice regions...To upscale the genetic parameters of CERES-Rice in regional applications, Jiangsu Province, the second largest rice producing province in China, was taken as an example. The province was divided into four rice regions with different rice variety types, and five to six sites in each region were selected. Then the eight genetic parameters of CERES-Rice, particularly the four parameters related to the yield, were modified and validated using the Trial and Error Method and the local statistical data of rice yield at a county level from 2001 to 2004, combined with the regional experiments of rice varieties in the province as well as the local meteorological and soil data (Method 1). The simulated results of Method 1 were compared with those of other three traditional methods upscaling the genetic parameters, i.e., using one-site experimental data from a local representative rice variety (Method 2), using local long-term rice yield data at a county level after deducting the trend yield due to progress of science and technology (Method 3), and using rice yield data at a super scale, such as provincial, ecological zone, country or continent levels (Method 4). The results showed that the best fitness was obtained by using the Method 1. The coefficients of correlation between the simulated yield and the statistical yield in the Method 1 were significant at 0.05 or 0.01 levels and the root mean squared error (RMSE) values were less than 9% for all the four rice regions. The method for upscaling the genetic parameters of CERES-Rice presented is not only valuable for the impact studies of climate change, but also favorable to provide a methodology for reference in crop model applications to the other regional studies.展开更多
Broadband response metamaterial absorber(MMA)remains a challenge among researchers.A nanostructured new zero-indexed metamaterial(ZIM)absorber is presented in this study,constructed with a hexagonal shape resonator fo...Broadband response metamaterial absorber(MMA)remains a challenge among researchers.A nanostructured new zero-indexed metamaterial(ZIM)absorber is presented in this study,constructed with a hexagonal shape resonator for optical region applications.The design consists of a resonator and dielectric layers made with tungsten and quartz(Fused).The proposed absorbent exhibits average absorption of more than 0.8972(89.72%)within the visible wavelength of 450–600 nm and nearly perfect absorption of 0.99(99%)at 461.61 nm.Based on computational analysis,the proposed absorber can be characterized as ZIM.The developments of ZIM absorbers have demonstrated plasmonic resonance characteristics and a perfect impedance match.The incidence obliquity in typically the range of 0◦–90◦both in TE and TM mode with maximum absorbance is more than 0.8972(∼89.72%),and up to 45◦angular stability is suitable for solar cell applications,like exploiting solar energy.The proposed structure prototype is designed and simulated by studying microwave technology numerical computer simulation(CST)tools.The finite integration technique(FIT)based simulator CST and finite element method(FEM)based simulator HFSS also helps validate the numerical data of the proposed ZIM absorber.The proposed MMA design is appropriate for substantial absorption,wide-angle stability,absolute invisible layers,magnetic resonance imaging(MRI),color images,and thermal imaging applications.展开更多
This study used a 1.5-layer reduced-gravity numerical model to investigate the nonlinear dynamics of Kuroshio intrusion into the Luzon Strait.The model results suggested that both basin-scale wind curl and lateral fri...This study used a 1.5-layer reduced-gravity numerical model to investigate the nonlinear dynamics of Kuroshio intrusion into the Luzon Strait.The model results suggested that both basin-scale wind curl and lateral friction are the primary factors that control the transformation of the flow,although inertia also plays an important role.Using an idealized model,both the mechanism via which the flow pattern changes depending on the two primary factors and the occurrence of hysteresis were investigated.It was established that the transformation of the Kuroshio flow field between the four previously reported flow patterns(i.e.,leaping across,current looping,eddy shedding,and branch intruding) can be explained under a unified theoretical framework.A diagram is proposed to explain how the flow field transforms between the four patterns from a certain prior state when varying the values of the controlling factors.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 30370815 and 30470332)
文摘To upscale the genetic parameters of CERES-Rice in regional applications, Jiangsu Province, the second largest rice producing province in China, was taken as an example. The province was divided into four rice regions with different rice variety types, and five to six sites in each region were selected. Then the eight genetic parameters of CERES-Rice, particularly the four parameters related to the yield, were modified and validated using the Trial and Error Method and the local statistical data of rice yield at a county level from 2001 to 2004, combined with the regional experiments of rice varieties in the province as well as the local meteorological and soil data (Method 1). The simulated results of Method 1 were compared with those of other three traditional methods upscaling the genetic parameters, i.e., using one-site experimental data from a local representative rice variety (Method 2), using local long-term rice yield data at a county level after deducting the trend yield due to progress of science and technology (Method 3), and using rice yield data at a super scale, such as provincial, ecological zone, country or continent levels (Method 4). The results showed that the best fitness was obtained by using the Method 1. The coefficients of correlation between the simulated yield and the statistical yield in the Method 1 were significant at 0.05 or 0.01 levels and the root mean squared error (RMSE) values were less than 9% for all the four rice regions. The method for upscaling the genetic parameters of CERES-Rice presented is not only valuable for the impact studies of climate change, but also favorable to provide a methodology for reference in crop model applications to the other regional studies.
基金This work is supported by the Universiti Kebangsaan Malaysia research grant GUP-2020-074.
文摘Broadband response metamaterial absorber(MMA)remains a challenge among researchers.A nanostructured new zero-indexed metamaterial(ZIM)absorber is presented in this study,constructed with a hexagonal shape resonator for optical region applications.The design consists of a resonator and dielectric layers made with tungsten and quartz(Fused).The proposed absorbent exhibits average absorption of more than 0.8972(89.72%)within the visible wavelength of 450–600 nm and nearly perfect absorption of 0.99(99%)at 461.61 nm.Based on computational analysis,the proposed absorber can be characterized as ZIM.The developments of ZIM absorbers have demonstrated plasmonic resonance characteristics and a perfect impedance match.The incidence obliquity in typically the range of 0◦–90◦both in TE and TM mode with maximum absorbance is more than 0.8972(∼89.72%),and up to 45◦angular stability is suitable for solar cell applications,like exploiting solar energy.The proposed structure prototype is designed and simulated by studying microwave technology numerical computer simulation(CST)tools.The finite integration technique(FIT)based simulator CST and finite element method(FEM)based simulator HFSS also helps validate the numerical data of the proposed ZIM absorber.The proposed MMA design is appropriate for substantial absorption,wide-angle stability,absolute invisible layers,magnetic resonance imaging(MRI),color images,and thermal imaging applications.
基金supported by the National Programme on Global Change and Air-Sea Interaction(Grant No.GASI-IPOVAI-01-06)the National Natural Science Foundation of China(Grant Nos. 41630967,41476018,U1406401 & 41421005)the CAS Strategic Priority Project(Grant No.XDA11020101)
文摘This study used a 1.5-layer reduced-gravity numerical model to investigate the nonlinear dynamics of Kuroshio intrusion into the Luzon Strait.The model results suggested that both basin-scale wind curl and lateral friction are the primary factors that control the transformation of the flow,although inertia also plays an important role.Using an idealized model,both the mechanism via which the flow pattern changes depending on the two primary factors and the occurrence of hysteresis were investigated.It was established that the transformation of the Kuroshio flow field between the four previously reported flow patterns(i.e.,leaping across,current looping,eddy shedding,and branch intruding) can be explained under a unified theoretical framework.A diagram is proposed to explain how the flow field transforms between the four patterns from a certain prior state when varying the values of the controlling factors.