In the electricity market environment,the regional integrated energy system(RIES)can reduce the total operation cost by participating in electricity market transactions.However,the RIES will face the risk of load and ...In the electricity market environment,the regional integrated energy system(RIES)can reduce the total operation cost by participating in electricity market transactions.However,the RIES will face the risk of load and electricity price uncertainties,which may make its operation cost higher than expected.This paper proposes a method to optimize the operation cost of the RIES in the electricity market environment considering uncertainty.Firstly,based on the operation cost structure of the RIES in the electricity market environment,the energy flow relationship of the RIES is analyzed,and the operation cost model of the RIES is built.Then,the electricity purchase costs of the RIES in the medium-and long-term electricity markets,the spot electricity market,and the retail electricity market are analyzed.Finally,considering the risk of load and electricity price uncertainties,the operation cost optimization model of the RIES is established based on conditional value-at-risk.Then it is solved to obtain the operation cost optimization strategy of the RIES.Verification results show that the proposed operation cost optimization method can reduce the operation cost of high electricity price scenario by optimizing the energy purchase and distribution strategy,constrain the risk of load and electricity price uncertainties,and help balance the risks and benefits.展开更多
为促进风电消纳,减少火电机组的碳排放,解决综合能源系统(Integrated Energy System,IES)低碳经济运行问题,文中引入变掺氧富氧燃烧技术对燃气机组进行改造,并结合利用液化天然气(Liquefied Natural Gas,LNG)冷能的液化空气储能(Liquid ...为促进风电消纳,减少火电机组的碳排放,解决综合能源系统(Integrated Energy System,IES)低碳经济运行问题,文中引入变掺氧富氧燃烧技术对燃气机组进行改造,并结合利用液化天然气(Liquefied Natural Gas,LNG)冷能的液化空气储能(Liquid Air Energy Storage,LAES),提出了一种电热气冷IES低碳经济优化策略。首先,构建含变掺氧富氧燃烧燃气机组、利用LNG冷能的LAES、电转气(Power To Gas,P2G)设备、中央空调和溴化锂制冷机的IES架构,并建立各设备的数学模型;其次,引入阶梯式碳交易机制,建立了以系统运行成本最小为目标的电热气冷IES低碳经济调度模型;最后,采用MATLAB调用GUROBI求解器对多个场景进行求解,验证了文中提出的低碳经济优化调度策略可以提高系统的风电消纳、有效降低系统运行成本,实现碳减排。展开更多
Coupling between electricity systems and heating systems are becoming stronger,leading to more flexible and more complex interactions between these systems.The operation of integrated energy systems is greatly affecte...Coupling between electricity systems and heating systems are becoming stronger,leading to more flexible and more complex interactions between these systems.The operation of integrated energy systems is greatly affected,especially when security is concerned.Steady-state analysis methods have been widely studied in recent research,which is far from enough when the slow thermal dynamics of heating networks are introduced.Therefore,an integrated quasi-dynamic model of integrated electricity and heating systems is developed.The model combines a heating network dynamic thermal model and the sequential steady-state models of electricity networks,coupling components,and heating network hydraulics.Based on this model,a simulation method is proposed and quasi-dynamic interactions between electricity systems and heating systems are quantified with the highlights of transport delay.Then the quasi-dynamic interactions were applied using security control to relieve congestion in electricity systems.Results show that both the transport delay and control strategies have significant influences on the quasi-dynamic interactions.展开更多
为解决能源危机问题,提高能源利用率,综合能源系统(integrated energy system,IES)成为发展创新型能源系统的重要方向。准确的多元负荷预测对IES的经济调度和优化运行有着重要的影响,而借助混沌理论能够进一步挖掘IES多元负荷潜在的耦...为解决能源危机问题,提高能源利用率,综合能源系统(integrated energy system,IES)成为发展创新型能源系统的重要方向。准确的多元负荷预测对IES的经济调度和优化运行有着重要的影响,而借助混沌理论能够进一步挖掘IES多元负荷潜在的耦合特性。提出了一种基于多变量相空间重构(multivariate phase space reconstruction,MPSR)和径向基函数神经网络(radial basis function neural network,RBFNN)相结合的IES超短期电冷热负荷预测模型。首先,分析了IES中能源子系统之间的耦合关系,运用Pearson相关性分析定量描述多元负荷和气象特征的相关性。然后,采用C-C法对时间序列进行MPSR以进一步挖掘电冷热负荷和气象特征在时间上的耦合特性。最后,利用RBFNN模型对电冷热负荷间耦合关系进行学习并预测。实验结果表明,所提方法有效挖掘并学习电冷热负荷在时间上的耦合特性,且在不同样本容量下具有良好且稳定的预测效果。展开更多
为了进一步降低园区综合能源系统(park-level integrated energy system,PIES)碳排放量,优化热电联产(combined heat and power,CHP)机组出力的灵活性,提出一种考虑改进阶梯型碳交易和CHP热电灵活输出的PIES低碳经济调度策略。首先,将...为了进一步降低园区综合能源系统(park-level integrated energy system,PIES)碳排放量,优化热电联产(combined heat and power,CHP)机组出力的灵活性,提出一种考虑改进阶梯型碳交易和CHP热电灵活输出的PIES低碳经济调度策略。首先,将遗传算法与模糊控制相结合,设计一种遗传模糊碳交易参数优化器,从而对现有阶梯型碳交易机制进行改进,实现该机制参数的自适应变化;其次,在传统CHP中加入卡琳娜(Kalina)循环与电锅炉(electricboiler,EB),构造CHP热电灵活输出模型,以同时满足电、热负荷的不同需求;然后,提出一种柔性指标——电、热输出占比率,进而计算出电、热输出占比率区间,以衡量CHP运行灵活性;最后,将改进阶梯型碳交易机制和CHP热电灵活输出模型协同优化,以系统运行成本和碳交易成本之和最小为目标,构建PIES低碳经济优化模型。算例分析表明,所提策略可有效降低经济成本和碳排放量,同时还可扩展CHP灵活输出调节范围,能够为PIES低碳经济调度提供参考。展开更多
基金supported in part by the Research Project of Digital Grid Research Institute,China Southern Power Grid(No.YTYZW20010)in part by the Research and Development Program Project in Key Areas of Guangdong Province(No.2021B0101230003)in part by the National Natural Science Foundation of China(No.51907031)。
文摘In the electricity market environment,the regional integrated energy system(RIES)can reduce the total operation cost by participating in electricity market transactions.However,the RIES will face the risk of load and electricity price uncertainties,which may make its operation cost higher than expected.This paper proposes a method to optimize the operation cost of the RIES in the electricity market environment considering uncertainty.Firstly,based on the operation cost structure of the RIES in the electricity market environment,the energy flow relationship of the RIES is analyzed,and the operation cost model of the RIES is built.Then,the electricity purchase costs of the RIES in the medium-and long-term electricity markets,the spot electricity market,and the retail electricity market are analyzed.Finally,considering the risk of load and electricity price uncertainties,the operation cost optimization model of the RIES is established based on conditional value-at-risk.Then it is solved to obtain the operation cost optimization strategy of the RIES.Verification results show that the proposed operation cost optimization method can reduce the operation cost of high electricity price scenario by optimizing the energy purchase and distribution strategy,constrain the risk of load and electricity price uncertainties,and help balance the risks and benefits.
文摘为促进风电消纳,减少火电机组的碳排放,解决综合能源系统(Integrated Energy System,IES)低碳经济运行问题,文中引入变掺氧富氧燃烧技术对燃气机组进行改造,并结合利用液化天然气(Liquefied Natural Gas,LNG)冷能的液化空气储能(Liquid Air Energy Storage,LAES),提出了一种电热气冷IES低碳经济优化策略。首先,构建含变掺氧富氧燃烧燃气机组、利用LNG冷能的LAES、电转气(Power To Gas,P2G)设备、中央空调和溴化锂制冷机的IES架构,并建立各设备的数学模型;其次,引入阶梯式碳交易机制,建立了以系统运行成本最小为目标的电热气冷IES低碳经济调度模型;最后,采用MATLAB调用GUROBI求解器对多个场景进行求解,验证了文中提出的低碳经济优化调度策略可以提高系统的风电消纳、有效降低系统运行成本,实现碳减排。
基金This work was supported in part by the National Natural Science Foundation of China(NSFC)(51537006)European Union’s Horizon 2020 research and innovation programme(774309,MAGNATUDE),WEFO FLEXIS project.
文摘Coupling between electricity systems and heating systems are becoming stronger,leading to more flexible and more complex interactions between these systems.The operation of integrated energy systems is greatly affected,especially when security is concerned.Steady-state analysis methods have been widely studied in recent research,which is far from enough when the slow thermal dynamics of heating networks are introduced.Therefore,an integrated quasi-dynamic model of integrated electricity and heating systems is developed.The model combines a heating network dynamic thermal model and the sequential steady-state models of electricity networks,coupling components,and heating network hydraulics.Based on this model,a simulation method is proposed and quasi-dynamic interactions between electricity systems and heating systems are quantified with the highlights of transport delay.Then the quasi-dynamic interactions were applied using security control to relieve congestion in electricity systems.Results show that both the transport delay and control strategies have significant influences on the quasi-dynamic interactions.
文摘为解决能源危机问题,提高能源利用率,综合能源系统(integrated energy system,IES)成为发展创新型能源系统的重要方向。准确的多元负荷预测对IES的经济调度和优化运行有着重要的影响,而借助混沌理论能够进一步挖掘IES多元负荷潜在的耦合特性。提出了一种基于多变量相空间重构(multivariate phase space reconstruction,MPSR)和径向基函数神经网络(radial basis function neural network,RBFNN)相结合的IES超短期电冷热负荷预测模型。首先,分析了IES中能源子系统之间的耦合关系,运用Pearson相关性分析定量描述多元负荷和气象特征的相关性。然后,采用C-C法对时间序列进行MPSR以进一步挖掘电冷热负荷和气象特征在时间上的耦合特性。最后,利用RBFNN模型对电冷热负荷间耦合关系进行学习并预测。实验结果表明,所提方法有效挖掘并学习电冷热负荷在时间上的耦合特性,且在不同样本容量下具有良好且稳定的预测效果。
文摘为了进一步降低园区综合能源系统(park-level integrated energy system,PIES)碳排放量,优化热电联产(combined heat and power,CHP)机组出力的灵活性,提出一种考虑改进阶梯型碳交易和CHP热电灵活输出的PIES低碳经济调度策略。首先,将遗传算法与模糊控制相结合,设计一种遗传模糊碳交易参数优化器,从而对现有阶梯型碳交易机制进行改进,实现该机制参数的自适应变化;其次,在传统CHP中加入卡琳娜(Kalina)循环与电锅炉(electricboiler,EB),构造CHP热电灵活输出模型,以同时满足电、热负荷的不同需求;然后,提出一种柔性指标——电、热输出占比率,进而计算出电、热输出占比率区间,以衡量CHP运行灵活性;最后,将改进阶梯型碳交易机制和CHP热电灵活输出模型协同优化,以系统运行成本和碳交易成本之和最小为目标,构建PIES低碳经济优化模型。算例分析表明,所提策略可有效降低经济成本和碳排放量,同时还可扩展CHP灵活输出调节范围,能够为PIES低碳经济调度提供参考。