This paper investigates the possible sources of errors associated with tropical cyclone (TC) tracks forecasted using the Global/Regional Assimilation and Prediction System (GRAPES). The GRAPES forecasts were made ...This paper investigates the possible sources of errors associated with tropical cyclone (TC) tracks forecasted using the Global/Regional Assimilation and Prediction System (GRAPES). The GRAPES forecasts were made for 16 landfaIling TCs in the western North Pacific basin during the 2008 and 2009 seasons, with a forecast length of 72 hours, and using the default initial conditions ("initials", hereafter), which are from the NCEP-FNL dataset, as well as ECMWF initials. The forecasts are compared with ECMWF forecasts. The results show that in most TCs, the GRAPES forecasts are improved when using the ECMWF initials compared with the default initials. Compared with the ECMWF initials, the default initials produce lower intensity TCs and a lower intensity subtropical high, but a higher intensity South Asia high and monsoon trough, as well as a higher temperature but lower specific humidity at the TC center. Replacement of the geopotential height and wind fields with the ECMWF initials in and around the TC center at the initial time was found to be the most efficient way to improve the forecasts. In addition, TCs that showed the greatest improvement in forecast accuracy usually had the largest initial uncertainties in TC intensity and were usually in the intensifying phase. The results demonstrate the importance of the initial intensity for TC track forecasts made using GRAPES, and indicate the model is better in describing the intensifying phase than the decaying phase of TCs. Finally, the limit of the improvement indicates that the model error associated with GRAPES forecasts may be the main cause of poor forecasts of landfalling TCs. Thus, further examinations of the model errors are required.展开更多
This study analyzes the comparative patterns of democratization between geographic regions and the world. It addresses the question that how some determinants of democracy have different effects among geographical reg...This study analyzes the comparative patterns of democratization between geographic regions and the world. It addresses the question that how some determinants of democracy have different effects among geographical regions. Further, by comparing the similarities and differences in the patterns of democratic diffusion across regions, this study seeks to delineate what changes scholars should adopt in our epistemological approaches and methodological tools, such as the indices of democracy, in an attempt to better understand the policy implications of disparate findings from various empirical studies. As part of a larger research project, this paper focuses its attention on two of the geographical regions Asia and the Middle East.展开更多
研究I的结果表明:线性平衡方程(LBE)在热带地区不适用,而进一步改进方向是削弱LBE在该区域的约束程度。本文以此为基础,在GRAPES(global/regional assimilation and prediction system)全球变分同化系统中引入动力与统计混合平衡约束方...研究I的结果表明:线性平衡方程(LBE)在热带地区不适用,而进一步改进方向是削弱LBE在该区域的约束程度。本文以此为基础,在GRAPES(global/regional assimilation and prediction system)全球变分同化系统中引入动力与统计混合平衡约束方案。新方案在逐层求解LBE的基础上增加垂直方向的线性回归,回归系数随纬度和高度变化。针对背景误差协方差的分析表明,新方案可以更好的保证独立分析变量间预报误差不相关的基本要求,并大幅度减小热带地区平衡气压预报误差方差的量值和占总方差的比例。单点试验结果表明,与LBE方案相比,新方案对中、高纬影响很小,但在热带地区成功实现了风、压场分析的解耦,两者分析更为独立。并且,虽未考虑具体波动模态,但新方案给出的风、压场协相关结构与研究I的理论分析结果相近。一个月的同化循环与预报结果表明,引入新方案后,赤道外地区的同化预报效果为中性偏正,而热带地区风场的同化预报效果显著提高,LBE方案中平流层低层的风场同化预报异常被基本消除。展开更多
The three-river source region(TRSR), located in the Qinghai-Tibet Plateau in China, suffers from serious freeze-thaw(FT) erosion in China. Considering the unique eco-environment and the driving factors of the FT proce...The three-river source region(TRSR), located in the Qinghai-Tibet Plateau in China, suffers from serious freeze-thaw(FT) erosion in China. Considering the unique eco-environment and the driving factors of the FT process in the TRSR, we introduce the driving force factors of FT erosion(rainfall erosivity and wind field intensity during FT period) and precipitation during the FT period(indicating the phase-changed water content). The objective was to establish an improved evaluation method of FT erosion in the TRSR. The method has good applicability in the study region with an overall precision of 92%. The spatial and temporal changes of FT erosion from 2000 to 2015 are analyzed. Results show that FT erosion is widely distributed in the TRSR, with slight and mild erosion being the most widely distributed, followed by moderate erosion. Among the three sub-regions, the source region of the Yellow River has the slightest erosion intensity, whereas the erosion intensity of the source region of Yangtze River is the most severe. A slight improvement can be observed in the condition of FTerosion over the whole study region from 2000 to 2015. Vegetation coverage is the dominant factor affecting the intensity of FT erosion in the zones with sparse vegetation or bare land, whereas the climate factors play an important role in high vegetation coverage area. Slopes>28° also have a significant effect on the intensity of FT erosion in the zones. The results can provide a scientific basis for the prevention and management of the soil FT erosion in the TRSR.展开更多
With emergence of the BeiDou Navigation Satellite System(BDS), the Galileo Satellite Navigation System(Galileo), the Quasi-Zenith Satellite System(QZSS)and the restoration of the Global Navigation Satellite System(GLO...With emergence of the BeiDou Navigation Satellite System(BDS), the Galileo Satellite Navigation System(Galileo), the Quasi-Zenith Satellite System(QZSS)and the restoration of the Global Navigation Satellite System(GLONASS), the single Global Positioning System(GPS) has been gradually expanded into multiple global and regional navigation satellite systems(multi-GNSS/RNSS). In view of differences in these 5 systems, a consolidated multi-GNSS/RNSS precise point positioning(PPP) observation model is deduced in this contribution. In addition, the performance evaluation of PPP for multi-GNSS/RNSS is conducted using a large number of the multi-GNSS experiment(MGEX) station datasets. Experimental results show that multi-GNSS/RNSS can guarantee plenty of visible satellites effectively. Compared with single-system GPS, PDOP, HDOP, and VDOP values of the multi-GNSS/RNSS are improved by 46.8%, 46.5% and 46.3%, respectively. As for convergence time, the static and kinematic PPP of multi-GNSS/RNSS are superior to that of the single-system GPS, whose reliability, availability, and stability drop sharply with the increasing elevation cutoff. At satellite elevation cutoff of 40 °, the single-system GPS fails to carry out continuous positioning because of the insufficient visible satellites, while the multi-GNSS/RNSS PPP can still get positioning solutions with relatively high accuracy, especially in the horizontal direction.展开更多
Last June more than one thousand scientists from over 50 countries in the Pacific and other regions of the world gathered in Beijing of China and participated in the ⅩⅤⅢ Pacific Science Congress. This was an intern...Last June more than one thousand scientists from over 50 countries in the Pacific and other regions of the world gathered in Beijing of China and participated in the ⅩⅤⅢ Pacific Science Congress. This was an international general academic congress which had involved natural science, social science, engineering science,展开更多
Despite efficient parallelism in the solution of physical parameterization in the Global/Regional Assimilation and Prediction System(GRAPES),the Helmholtz equation in the dynamic core,with the increase of resolution,c...Despite efficient parallelism in the solution of physical parameterization in the Global/Regional Assimilation and Prediction System(GRAPES),the Helmholtz equation in the dynamic core,with the increase of resolution,can hardly achieve sufficient parallelism in the solving process due to a large amount of communication and irregular access.In this paper,optimizing the Helmholtz equation solution for better performance and higher efficiency has been an urgent task.An optimization scheme for the parallel solution of the Helmholtz equation is proposed in this paper.Specifically,the geometrical multigrid optimization strategy is designed by taking advantage of the data anisotropy of grid points near the pole and the isotropy of those near memory equator in the Helmholtz equation,and the Incomplete LU(ILU)decomposition preconditioner is adopted to speed up the convergence of the improved Generalized Conjugate Residual(GCR),which effectively reduces the number of iterations and the computation time.The overall solving performance of the Helmholtz equation is improved by thread-level parallelism,vectorization,and reuse of data in the cache.The experimental results show that the proposed optimization scheme can effectively eliminate the bottleneck of the Helmholtz equation as regards the solving speed.Considering the test results on a 10-node two-way server,the solution of the Helmholtz equation,compared with the original serial version,is accelerated by 100,with one-third of iterations reduced.展开更多
The operational numerical weather prediction system established by the China Meteorological Administration(CMA),based on the Global/Regional Assimilation and Prediction System(GRAPES)model,adopts the classical semi-im...The operational numerical weather prediction system established by the China Meteorological Administration(CMA),based on the Global/Regional Assimilation and Prediction System(GRAPES)model,adopts the classical semi-implicit semi-Lagrangian(SISL)time integration algorithm.This paper describes a major upgrade to the dynamical core of the CMA global forecast system(CMA-GFS),which was successfully incorporated into operation in 2020.In the upgrade,the classical SISL is further developed into a predictor–corrector scheme,a three-dimensional(3D)reference profile instead of the original isothermal reference profile is applied when implementing the semi-implicit algorithm,and a hybrid terrain-following vertical coordinate system is also applied.The new version of the dynamical core greatly improves the model performance,the time integration reaches second-order accuracy,the time step can be extended by 50%,and the efficiency is greatly improved(by approximately 30%).Atmospheric circulation simulation is systematically improved,and deviations in temperature,wind,and humidity are reduced.The new version of the dynamical core provides a solid foundation for further development of the entire operational system of the CMA.展开更多
Spatial-temporal scales effects are general among human-nature interactions.However,the laws and mechanisms of the interaction between humans and the environment at different spatial-temporal scales remain to be ident...Spatial-temporal scales effects are general among human-nature interactions.However,the laws and mechanisms of the interaction between humans and the environment at different spatial-temporal scales remain to be identified.The Hexi Corridor in Northwest China is located in the eastern section of the Silk Road and is one of the world’s first long-distance cultural exchange centers.Here we present a comprehensive dataset of the Hexi Corridor,including changes in environments,population,wars,famines,settlements,and ancient oases from the Neolithic to the historic period.Results show that humans adapt to climate change on the millennium scale by choosing corresponding production methods.Environmental change,civilization evolution,and dynasty replacement interrelate on the decadal and centennial scales.Social crises are closely linked to extreme weather events on the interannual scale.On the basis of these results,we find similar time scale effects in the world’s major ancient civilizations.We do so by analyzing their processes of civilization evolution.展开更多
Climate warming, one of the main features of global change, has exerted indelible impacts on the environment, among which the impact on the transport and fate of pollutants has aroused widespread concern. Persistent o...Climate warming, one of the main features of global change, has exerted indelible impacts on the environment, among which the impact on the transport and fate of pollutants has aroused widespread concern. Persistent organic pollutants(POPs) are a class of pollutants that are transported worldwide. Determining the impact of climate warming on the global cycling of POPs is important for understanding POP cycling processes and formulating relevant environmental policies. In this review, the main research findings in this field over the past ten years are summarized and the effects of climate warming on emissions, transport, storage, degradation and toxicity of POPs are reviewed. This review also summarizes the primary POP fate models and their application. Additionally, research gaps and future research directions are identified and suggested. Under the influence of climate change, global cycling of POPs mainly shows the following responses.(1) Global warming directly promotes the secondary emission of POPs; for example, temperature rise will cause POPs to be re-released from soils and oceans, and melting glaciers and permafrost can re-release POPs into freshwater ecosystems.(2) Global extreme weather events, such as droughts and floods, result in the redistribution of POPs through intense soil erosion.(3) The changes in atmospheric circulation and ocean currents have significantly influenced the global transport of POPs.(4) Climate warming has altered marine biological productivity, which has changed the POP storage capacity of the ocean.(5) Aquatic and terrestrial food-chain structures have undergone significant changes, which could lead to amplification of POP toxicity in ecosystems.(6) Overall, warming accelerates the POP volatilization process and increases the amount of POPs in the environment, although global warming facilitates their degradation at the same time.(7) Various models have predicted the future environmental behaviors of POPs. These models are used to assist governments in comprehensively considering the impact of global warming on the environmental fate of POPs and therefore controlling POPs effectively. Future studies should focus on the synergistic effects of global changes on the cycling of POPs. Additionally, the interactions among global carbon cycling, water cycling and POP cycling will be a new research direction for better understanding the adaptation of ecosystems to climate change.展开更多
Minimization algorithms are singular components in four-dimensional variational data assimilation(4DVar).In this paper,the convergence and application of the conjugate gradient algorithm(CGA),which is based on the Lan...Minimization algorithms are singular components in four-dimensional variational data assimilation(4DVar).In this paper,the convergence and application of the conjugate gradient algorithm(CGA),which is based on the Lanczos iterative algorithm and the Hessian matrix derived from tangent linear and adjoint models using a non-hydrostatic framework,are investigated in the 4DVar minimization.First,the influence of the Gram-Schmidt orthogonalization of the Lanczos vector on the convergence of the Lanczos algorithm is studied.The results show that the Lanczos algorithm without orthogonalization fails to converge after the ninth iteration in the 4DVar minimization,while the orthogonalized Lanczos algorithm converges stably.Second,the convergence and computational efficiency of the CGA and quasi-Newton method in batch cycling assimilation experiments are compared on the 4DVar platform of the Global/Regional Assimilation and Prediction System(GRAPES).The CGA is 40%more computationally efficient than the quasi-Newton method,although the equivalent analysis results can be obtained by using either the CGA or the quasi-Newton method.Thus,the CGA based on Lanczos iterations is better for solving the optimization problems in the GRAPES 4DVar system.展开更多
Numerical weather prediction(NWP) is a core technology in weather forecast and disaster mitigation. China’s NWP research and operational applications have been attached great importance by the meteorological communit...Numerical weather prediction(NWP) is a core technology in weather forecast and disaster mitigation. China’s NWP research and operational applications have been attached great importance by the meteorological community.Fundamental achievements have been made in the theories, methods, and NWP model development in China, which are of certain international impacts. In this paper, the scientific and technological progress of NWP in China since1949 is summarized. The current status and recent progress of the domestically developed NWP system-GRAPES(Global/Regional Assimilation and Pr Ediction System) are presented. Through independent research and development in the past 10 years, the operational GRAPES system has been established, which includes both regional and global deterministic and ensemble prediction models, with resolutions of 3-10 km for regional and 25-50 km for global forecasts. Major improvements include establishment of a new non-hydrostatic dynamic core, setup of four-dimensional variational data assimilation, and development of associated satellite application. As members of the GRAPES system, prediction models for atmospheric chemistry and air pollution, tropical cyclones, and ocean waves have also been developed and put into operational use. The GRAPES system has been an important milestone in NWP science and technology in China.展开更多
The community multiscale air quality (CMAQ) model was used to forecast air quality over the Pearl River Delta region from December 2013 to January 2014.The pollution forecasting performance of CMAQ coupled with two di...The community multiscale air quality (CMAQ) model was used to forecast air quality over the Pearl River Delta region from December 2013 to January 2014.The pollution forecasting performance of CMAQ coupled with two different meteorological models,i.e.,the global/regional assimilation and prediction system (GRAPES) and the fifth-generation mesoscale model (MM5),was assessed by comparison with observational data.The effects of meteorological factors and physicochemical processes on the forecast results were discussed through process analysis.The results showed that both models exhibited good performance but that of GRAPES-CMAQ was better.GRAPES was superior in predicting the overall variation tendencies of meteorological fields,but it showed large deviations in atmospheric pressure and wind speed.This contributed to the higher correlation coefficients of the pollutants with GRAPES-CMAQ but with greater deviations.The underestimations of nitrate and ammonium salt contributed to the underestimations of both particulate matter and extinction coefficients.Source emissions made the only positive contributions to surface layer SO2,CO,and NO.It was found that O3 originated primarily from horizontal and vertical transport and that its consumption was predominantly via chemical processes.Conversely,NO2 was found derived primarily from chemical production.展开更多
This study incorporated the Weather Research and Forecasting(WRF) model double-moment 6-class(WDM6) microphysics scheme into the mesoscale version of the Global/Regional Assimilation and Pr Ediction System(GRAPES...This study incorporated the Weather Research and Forecasting(WRF) model double-moment 6-class(WDM6) microphysics scheme into the mesoscale version of the Global/Regional Assimilation and Pr Ediction System(GRAPES_Meso). A rainfall event that occurred during 3–5 June 2015 around Beijing was simulated by using the WDM6, the WRF single-moment 6-class scheme(WSM6), and the NCEP 5-class scheme, respectively. The results show that both the distribution and magnitude of the rainfall simulated with WDM6 were more consistent with the observation. Compared with WDM6, WSM6 simulated larger cloud liquid water content, which provided more water vapor for graupel growth, leading to increased precipitation in the cold-rain processes. For areas with the warmrain processes, the sensitivity experiments using WDM6 showed that an increase in cloud condensation nuclei(CCN)number concentration led to enhanced CCN activation ratio and larger cloud droplet number concentration(Nc) but decreased cloud droplet effective diameter. The formation of more small-size cloud droplets resulted in a decrease in raindrop number concentration(Nr), inhibiting the warm-rain processes, thus gradually decreasing the amount of precipitation. For areas mainly with the cold-rain processes, the overall amount of precipitation increased; however, it gradually decreased when the CCN number concentration reached a certain magnitude. Hence, the effect of CCN number concentration on precipitation exhibits significant differences in different rainfall areas of the same precipitation event.展开更多
In this study, Fengyun-3 D(FY-3 D) Micro Wave Radiation Imager(MWRI) radiance data were directly assimilated into the Global/Regional Assimilation and Pr Ediction System(GRAPES) four-dimensional variational(4 DVar) sy...In this study, Fengyun-3 D(FY-3 D) Micro Wave Radiation Imager(MWRI) radiance data were directly assimilated into the Global/Regional Assimilation and Pr Ediction System(GRAPES) four-dimensional variational(4 DVar) system. Quality control procedures were developed for MWRI applications by using algorithms from similar microwave instruments. Compared with the FY-3 C MWRI, the bias of FY-3 D MWRI observations did not show a clear node-dependent difference from the numerical weather prediction background simulation. A conventional bias correction approach can therefore be used to remove systematic biases before the assimilation of data. After assimilating the MWRI radiance data into GRAPES, the geopotential height and humidity analysis fields were improved relative to the control experiment. There was a positive impact on the location of the subtropical high, which led to improvements in forecasts of the track of Typhoon Shanshan.展开更多
A moisture advection scheme is an essential module of a numerical weather/climate model representing the horizontal transport of water vapor.The Piecewise Rational Method(PRM) scalar advection scheme in the Global/Reg...A moisture advection scheme is an essential module of a numerical weather/climate model representing the horizontal transport of water vapor.The Piecewise Rational Method(PRM) scalar advection scheme in the Global/Regional Assimilation and Prediction System(GRAPES) solves the moisture flux advection equation based on PRM.Computation of the scalar advection involves boundary exchange,and computation of higher bandwidth requirements is complicated and time-consuming in GRAPES.Recently,Graphics Processing Units(GPUs) have been widely used to solve scientific and engineering computing problems owing to advancements in GPU hardware and related programming models such as CUDA/OpenCL and Open Accelerator(OpenACC).Herein,we present an accelerated PRM scalar advection scheme with Message Passing Interface(MPI) and OpenACC to fully exploit GPUs’ power over a cluster with multiple Central Processing Units(CPUs) and GPUs,together with optimization of various parameters such as minimizing data transfer,memory coalescing,exposing more parallelism,and overlapping computation with data transfers.Results show that about 3.5 times speedup is obtained for the entire model running at medium resolution with double precision when comparing the scheme’s elapsed time on a node with two GPUs(NVIDIA P100) and two 16-core CPUs(Intel Gold 6142).Further,results obtained from experiments of a higher resolution model with multiple GPUs show excellent scalability.展开更多
This work use the global WRF model containing quadruply nesting with which the highest resolution reached 10 km to simulate the typhoons landed on the coast of China in 2011.The model is driven by the reanalysis data ...This work use the global WRF model containing quadruply nesting with which the highest resolution reached 10 km to simulate the typhoons landed on the coast of China in 2011.The model is driven by the reanalysis data fnl with the resolution of 1°x 1°.The study assess the feasibility and applicability of the global WRF model in the 1-7 days prediction of Tropical Cyclone(TC)track by comparing it with the regional WRF model containing the same setting(physical scheme,dynamical frame,model resolution and nesting grid domain).The global model obtain a similar forecast accuracy to the regional model in 1-7 days,with a difference less than 50 km.The forecast accuracy of the global model for 1,2,3,4,5,6 and 7 days is about 70 km,120 km,180 km,240 km,320 km,400 km,and 500 km,respectively.The reason of the significant TC track errors in the forecast more than 3 or 4 days is analyzed,it is due to the poor representation of typhoon and its steering flow under the situation of binary typhoon system.The study show that the global WRF model can be exploited to proceed the high resolution TC simulation and make the TC track forecast up to 7 days but not in the case of multiple typhoon.展开更多
In this paper, a heavy rainfall process occurring in the Huaihe River Basin during 9-10 July 2005 is studied by the new generation numerical weather prediction model system-GRAPES, from the view of different initial f...In this paper, a heavy rainfall process occurring in the Huaihe River Basin during 9-10 July 2005 is studied by the new generation numerical weather prediction model system-GRAPES, from the view of different initial field effects on the prediction of the model. Several numerical experiments are conducted with the initial conditions and lateral boundary fields provided by T213 L31 and NCEP final analyses, respectively. The sensitivity of prediction products generated by GRAPES to different initial conditions, including effects of three-dimensional variational assimilation on the results, is discussed. After analyzing the differences between the two initial fields and the four simulated results, the memonic ability of the model to initial fields and their influences on precipitation forecast are investigated. Analyses show the obvious differences of sub-synoptic scale between T213 and NCEP initial fields, which result in the corresponding different simulation results, and the differences do not disappear with the integration running. It also shows that for the same initial field whether it has data assimilation or not, it only obviously influences the GRAPES model results in the initial 24 h. Then the differences reduce. In addition, both the location and intensity of heavy rain forecasted by GRAPES model Further is very close to the fact, but the forecasting area of strong torrential rain has some differences from the fact. For the same initial field when it has assimilation, the 9-12-, 12-24-, and 0-24-h precipitation forecasts of the model are better than those without assimilation. All these suggest that the ability of GRAPES numerical prediction depends on the different initial fields and lateral boundary conditions to some extent, and the differences of initial fields will determine the differences of GRAPES simulated results.展开更多
基金supported by the National Science and Technology Support Program(Grant.No.2012BAC22B03)the National Natural Science Foundation of China(Grant No.41475100)+1 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciencesthe Japan Society for the Promotion of Science KAKENHI(Grant.No.26282111)
文摘This paper investigates the possible sources of errors associated with tropical cyclone (TC) tracks forecasted using the Global/Regional Assimilation and Prediction System (GRAPES). The GRAPES forecasts were made for 16 landfaIling TCs in the western North Pacific basin during the 2008 and 2009 seasons, with a forecast length of 72 hours, and using the default initial conditions ("initials", hereafter), which are from the NCEP-FNL dataset, as well as ECMWF initials. The forecasts are compared with ECMWF forecasts. The results show that in most TCs, the GRAPES forecasts are improved when using the ECMWF initials compared with the default initials. Compared with the ECMWF initials, the default initials produce lower intensity TCs and a lower intensity subtropical high, but a higher intensity South Asia high and monsoon trough, as well as a higher temperature but lower specific humidity at the TC center. Replacement of the geopotential height and wind fields with the ECMWF initials in and around the TC center at the initial time was found to be the most efficient way to improve the forecasts. In addition, TCs that showed the greatest improvement in forecast accuracy usually had the largest initial uncertainties in TC intensity and were usually in the intensifying phase. The results demonstrate the importance of the initial intensity for TC track forecasts made using GRAPES, and indicate the model is better in describing the intensifying phase than the decaying phase of TCs. Finally, the limit of the improvement indicates that the model error associated with GRAPES forecasts may be the main cause of poor forecasts of landfalling TCs. Thus, further examinations of the model errors are required.
文摘This study analyzes the comparative patterns of democratization between geographic regions and the world. It addresses the question that how some determinants of democracy have different effects among geographical regions. Further, by comparing the similarities and differences in the patterns of democratic diffusion across regions, this study seeks to delineate what changes scholars should adopt in our epistemological approaches and methodological tools, such as the indices of democracy, in an attempt to better understand the policy implications of disparate findings from various empirical studies. As part of a larger research project, this paper focuses its attention on two of the geographical regions Asia and the Middle East.
文摘研究I的结果表明:线性平衡方程(LBE)在热带地区不适用,而进一步改进方向是削弱LBE在该区域的约束程度。本文以此为基础,在GRAPES(global/regional assimilation and prediction system)全球变分同化系统中引入动力与统计混合平衡约束方案。新方案在逐层求解LBE的基础上增加垂直方向的线性回归,回归系数随纬度和高度变化。针对背景误差协方差的分析表明,新方案可以更好的保证独立分析变量间预报误差不相关的基本要求,并大幅度减小热带地区平衡气压预报误差方差的量值和占总方差的比例。单点试验结果表明,与LBE方案相比,新方案对中、高纬影响很小,但在热带地区成功实现了风、压场分析的解耦,两者分析更为独立。并且,虽未考虑具体波动模态,但新方案给出的风、压场协相关结构与研究I的理论分析结果相近。一个月的同化循环与预报结果表明,引入新方案后,赤道外地区的同化预报效果为中性偏正,而热带地区风场的同化预报效果显著提高,LBE方案中平流层低层的风场同化预报异常被基本消除。
基金funded by the Open fund of Key Laboratory for Digital Land and Resources of Jiangxi Province, East China University of Technology (Grant No. DLLJ201709)Open fund of Key Laboratory for National Geographic Census and Monitoring, National Administration of Surveying, Mapping and Geoinformation (Grant No. 2016NGCM02)+2 种基金Open fund of Key Laboratory of Precise Engineering and Industry Surveying (Grant No. PF2015-17)National Administration of Surveying, Mapping and Geoinformation, National Natural Science Foundation of China (Grant Nos. 41501416, 40775019)the Natural Science Foundation of Shandong Province (Grant Nos. ZR2014DL001, ZR2015DL005)
文摘The three-river source region(TRSR), located in the Qinghai-Tibet Plateau in China, suffers from serious freeze-thaw(FT) erosion in China. Considering the unique eco-environment and the driving factors of the FT process in the TRSR, we introduce the driving force factors of FT erosion(rainfall erosivity and wind field intensity during FT period) and precipitation during the FT period(indicating the phase-changed water content). The objective was to establish an improved evaluation method of FT erosion in the TRSR. The method has good applicability in the study region with an overall precision of 92%. The spatial and temporal changes of FT erosion from 2000 to 2015 are analyzed. Results show that FT erosion is widely distributed in the TRSR, with slight and mild erosion being the most widely distributed, followed by moderate erosion. Among the three sub-regions, the source region of the Yellow River has the slightest erosion intensity, whereas the erosion intensity of the source region of Yangtze River is the most severe. A slight improvement can be observed in the condition of FTerosion over the whole study region from 2000 to 2015. Vegetation coverage is the dominant factor affecting the intensity of FT erosion in the zones with sparse vegetation or bare land, whereas the climate factors play an important role in high vegetation coverage area. Slopes>28° also have a significant effect on the intensity of FT erosion in the zones. The results can provide a scientific basis for the prevention and management of the soil FT erosion in the TRSR.
基金Supported by the National Natural Science Foundation of China (No. 41604018)the Fundamental Research Funds for the Central Universities(No. 2019B17514)+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province (No. nos. sjky19_05132019B60114)
文摘With emergence of the BeiDou Navigation Satellite System(BDS), the Galileo Satellite Navigation System(Galileo), the Quasi-Zenith Satellite System(QZSS)and the restoration of the Global Navigation Satellite System(GLONASS), the single Global Positioning System(GPS) has been gradually expanded into multiple global and regional navigation satellite systems(multi-GNSS/RNSS). In view of differences in these 5 systems, a consolidated multi-GNSS/RNSS precise point positioning(PPP) observation model is deduced in this contribution. In addition, the performance evaluation of PPP for multi-GNSS/RNSS is conducted using a large number of the multi-GNSS experiment(MGEX) station datasets. Experimental results show that multi-GNSS/RNSS can guarantee plenty of visible satellites effectively. Compared with single-system GPS, PDOP, HDOP, and VDOP values of the multi-GNSS/RNSS are improved by 46.8%, 46.5% and 46.3%, respectively. As for convergence time, the static and kinematic PPP of multi-GNSS/RNSS are superior to that of the single-system GPS, whose reliability, availability, and stability drop sharply with the increasing elevation cutoff. At satellite elevation cutoff of 40 °, the single-system GPS fails to carry out continuous positioning because of the insufficient visible satellites, while the multi-GNSS/RNSS PPP can still get positioning solutions with relatively high accuracy, especially in the horizontal direction.
文摘Last June more than one thousand scientists from over 50 countries in the Pacific and other regions of the world gathered in Beijing of China and participated in the ⅩⅤⅢ Pacific Science Congress. This was an international general academic congress which had involved natural science, social science, engineering science,
基金partially supported by the Open Project of State Key Laboratory of Plateau Ecology and Agricuture,Qinghai University(No.2020-ZZ-03)the Qinghai Province High-End Innovative Thousand Talents Program Leading Talents+1 种基金the National Natural Science Foundation of China(Nos.61762074 and 61962051)the National Natural Science Foundation of Qinghai Province(No.2019-ZJ-7034)。
文摘Despite efficient parallelism in the solution of physical parameterization in the Global/Regional Assimilation and Prediction System(GRAPES),the Helmholtz equation in the dynamic core,with the increase of resolution,can hardly achieve sufficient parallelism in the solving process due to a large amount of communication and irregular access.In this paper,optimizing the Helmholtz equation solution for better performance and higher efficiency has been an urgent task.An optimization scheme for the parallel solution of the Helmholtz equation is proposed in this paper.Specifically,the geometrical multigrid optimization strategy is designed by taking advantage of the data anisotropy of grid points near the pole and the isotropy of those near memory equator in the Helmholtz equation,and the Incomplete LU(ILU)decomposition preconditioner is adopted to speed up the convergence of the improved Generalized Conjugate Residual(GCR),which effectively reduces the number of iterations and the computation time.The overall solving performance of the Helmholtz equation is improved by thread-level parallelism,vectorization,and reuse of data in the cache.The experimental results show that the proposed optimization scheme can effectively eliminate the bottleneck of the Helmholtz equation as regards the solving speed.Considering the test results on a 10-node two-way server,the solution of the Helmholtz equation,compared with the original serial version,is accelerated by 100,with one-third of iterations reduced.
基金Supported by the National Natural Science Foundation of China(42090032 and 42275168).
文摘The operational numerical weather prediction system established by the China Meteorological Administration(CMA),based on the Global/Regional Assimilation and Prediction System(GRAPES)model,adopts the classical semi-implicit semi-Lagrangian(SISL)time integration algorithm.This paper describes a major upgrade to the dynamical core of the CMA global forecast system(CMA-GFS),which was successfully incorporated into operation in 2020.In the upgrade,the classical SISL is further developed into a predictor–corrector scheme,a three-dimensional(3D)reference profile instead of the original isothermal reference profile is applied when implementing the semi-implicit algorithm,and a hybrid terrain-following vertical coordinate system is also applied.The new version of the dynamical core greatly improves the model performance,the time integration reaches second-order accuracy,the time step can be extended by 50%,and the efficiency is greatly improved(by approximately 30%).Atmospheric circulation simulation is systematically improved,and deviations in temperature,wind,and humidity are reduced.The new version of the dynamical core provides a solid foundation for further development of the entire operational system of the CMA.
基金Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDA20100102National Natural Science Foundation of China,No.42077415+1 种基金The Second Tibetan Plateau Scientific Expedition and Research Program(STEP),No.2019QZKK0202The 111 Project,No.BP0618001。
文摘Spatial-temporal scales effects are general among human-nature interactions.However,the laws and mechanisms of the interaction between humans and the environment at different spatial-temporal scales remain to be identified.The Hexi Corridor in Northwest China is located in the eastern section of the Silk Road and is one of the world’s first long-distance cultural exchange centers.Here we present a comprehensive dataset of the Hexi Corridor,including changes in environments,population,wars,famines,settlements,and ancient oases from the Neolithic to the historic period.Results show that humans adapt to climate change on the millennium scale by choosing corresponding production methods.Environmental change,civilization evolution,and dynasty replacement interrelate on the decadal and centennial scales.Social crises are closely linked to extreme weather events on the interannual scale.On the basis of these results,we find similar time scale effects in the world’s major ancient civilizations.We do so by analyzing their processes of civilization evolution.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41222010,41571463)the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2011067)
文摘Climate warming, one of the main features of global change, has exerted indelible impacts on the environment, among which the impact on the transport and fate of pollutants has aroused widespread concern. Persistent organic pollutants(POPs) are a class of pollutants that are transported worldwide. Determining the impact of climate warming on the global cycling of POPs is important for understanding POP cycling processes and formulating relevant environmental policies. In this review, the main research findings in this field over the past ten years are summarized and the effects of climate warming on emissions, transport, storage, degradation and toxicity of POPs are reviewed. This review also summarizes the primary POP fate models and their application. Additionally, research gaps and future research directions are identified and suggested. Under the influence of climate change, global cycling of POPs mainly shows the following responses.(1) Global warming directly promotes the secondary emission of POPs; for example, temperature rise will cause POPs to be re-released from soils and oceans, and melting glaciers and permafrost can re-release POPs into freshwater ecosystems.(2) Global extreme weather events, such as droughts and floods, result in the redistribution of POPs through intense soil erosion.(3) The changes in atmospheric circulation and ocean currents have significantly influenced the global transport of POPs.(4) Climate warming has altered marine biological productivity, which has changed the POP storage capacity of the ocean.(5) Aquatic and terrestrial food-chain structures have undergone significant changes, which could lead to amplification of POP toxicity in ecosystems.(6) Overall, warming accelerates the POP volatilization process and increases the amount of POPs in the environment, although global warming facilitates their degradation at the same time.(7) Various models have predicted the future environmental behaviors of POPs. These models are used to assist governments in comprehensively considering the impact of global warming on the environmental fate of POPs and therefore controlling POPs effectively. Future studies should focus on the synergistic effects of global changes on the cycling of POPs. Additionally, the interactions among global carbon cycling, water cycling and POP cycling will be a new research direction for better understanding the adaptation of ecosystems to climate change.
基金Supported by the China Meteorological Administration Special Public Welfare Research Fund(GYHY201506003)
文摘Minimization algorithms are singular components in four-dimensional variational data assimilation(4DVar).In this paper,the convergence and application of the conjugate gradient algorithm(CGA),which is based on the Lanczos iterative algorithm and the Hessian matrix derived from tangent linear and adjoint models using a non-hydrostatic framework,are investigated in the 4DVar minimization.First,the influence of the Gram-Schmidt orthogonalization of the Lanczos vector on the convergence of the Lanczos algorithm is studied.The results show that the Lanczos algorithm without orthogonalization fails to converge after the ninth iteration in the 4DVar minimization,while the orthogonalized Lanczos algorithm converges stably.Second,the convergence and computational efficiency of the CGA and quasi-Newton method in batch cycling assimilation experiments are compared on the 4DVar platform of the Global/Regional Assimilation and Prediction System(GRAPES).The CGA is 40%more computationally efficient than the quasi-Newton method,although the equivalent analysis results can be obtained by using either the CGA or the quasi-Newton method.Thus,the CGA based on Lanczos iterations is better for solving the optimization problems in the GRAPES 4DVar system.
基金Supported by the National Key Research and Development Program of China(2017YFC1501900)Middle-and Long-term Development Strategic Research Project of the Chinese Academy of Engineering(2019-ZCQ-06)。
文摘Numerical weather prediction(NWP) is a core technology in weather forecast and disaster mitigation. China’s NWP research and operational applications have been attached great importance by the meteorological community.Fundamental achievements have been made in the theories, methods, and NWP model development in China, which are of certain international impacts. In this paper, the scientific and technological progress of NWP in China since1949 is summarized. The current status and recent progress of the domestically developed NWP system-GRAPES(Global/Regional Assimilation and Pr Ediction System) are presented. Through independent research and development in the past 10 years, the operational GRAPES system has been established, which includes both regional and global deterministic and ensemble prediction models, with resolutions of 3-10 km for regional and 25-50 km for global forecasts. Major improvements include establishment of a new non-hydrostatic dynamic core, setup of four-dimensional variational data assimilation, and development of associated satellite application. As members of the GRAPES system, prediction models for atmospheric chemistry and air pollution, tropical cyclones, and ocean waves have also been developed and put into operational use. The GRAPES system has been an important milestone in NWP science and technology in China.
基金the National Key R&D Program of China (No.2016YFC0203305)Natural Science Foundation of China (41775037).
文摘The community multiscale air quality (CMAQ) model was used to forecast air quality over the Pearl River Delta region from December 2013 to January 2014.The pollution forecasting performance of CMAQ coupled with two different meteorological models,i.e.,the global/regional assimilation and prediction system (GRAPES) and the fifth-generation mesoscale model (MM5),was assessed by comparison with observational data.The effects of meteorological factors and physicochemical processes on the forecast results were discussed through process analysis.The results showed that both models exhibited good performance but that of GRAPES-CMAQ was better.GRAPES was superior in predicting the overall variation tendencies of meteorological fields,but it showed large deviations in atmospheric pressure and wind speed.This contributed to the higher correlation coefficients of the pollutants with GRAPES-CMAQ but with greater deviations.The underestimations of nitrate and ammonium salt contributed to the underestimations of both particulate matter and extinction coefficients.Source emissions made the only positive contributions to surface layer SO2,CO,and NO.It was found that O3 originated primarily from horizontal and vertical transport and that its consumption was predominantly via chemical processes.Conversely,NO2 was found derived primarily from chemical production.
基金Supported by the National Key Project(2016YFC0203306)National Natural Science Foundation of China(41590874)+2 种基金National(Key)973 Program(2014CB441201)Chinese Academy of Meteorological Sciences’ Project(2017Z001)Key Project of Air Pollution Cause and Control(DQGG0104)
文摘This study incorporated the Weather Research and Forecasting(WRF) model double-moment 6-class(WDM6) microphysics scheme into the mesoscale version of the Global/Regional Assimilation and Pr Ediction System(GRAPES_Meso). A rainfall event that occurred during 3–5 June 2015 around Beijing was simulated by using the WDM6, the WRF single-moment 6-class scheme(WSM6), and the NCEP 5-class scheme, respectively. The results show that both the distribution and magnitude of the rainfall simulated with WDM6 were more consistent with the observation. Compared with WDM6, WSM6 simulated larger cloud liquid water content, which provided more water vapor for graupel growth, leading to increased precipitation in the cold-rain processes. For areas with the warmrain processes, the sensitivity experiments using WDM6 showed that an increase in cloud condensation nuclei(CCN)number concentration led to enhanced CCN activation ratio and larger cloud droplet number concentration(Nc) but decreased cloud droplet effective diameter. The formation of more small-size cloud droplets resulted in a decrease in raindrop number concentration(Nr), inhibiting the warm-rain processes, thus gradually decreasing the amount of precipitation. For areas mainly with the cold-rain processes, the overall amount of precipitation increased; however, it gradually decreased when the CCN number concentration reached a certain magnitude. Hence, the effect of CCN number concentration on precipitation exhibits significant differences in different rainfall areas of the same precipitation event.
基金Supported by the National Natural Science Foundation of China(41675108)National Key Research and Development Program(2018YFC1506700)Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0105)。
文摘In this study, Fengyun-3 D(FY-3 D) Micro Wave Radiation Imager(MWRI) radiance data were directly assimilated into the Global/Regional Assimilation and Pr Ediction System(GRAPES) four-dimensional variational(4 DVar) system. Quality control procedures were developed for MWRI applications by using algorithms from similar microwave instruments. Compared with the FY-3 C MWRI, the bias of FY-3 D MWRI observations did not show a clear node-dependent difference from the numerical weather prediction background simulation. A conventional bias correction approach can therefore be used to remove systematic biases before the assimilation of data. After assimilating the MWRI radiance data into GRAPES, the geopotential height and humidity analysis fields were improved relative to the control experiment. There was a positive impact on the location of the subtropical high, which led to improvements in forecasts of the track of Typhoon Shanshan.
基金supported by the decision support project of response to climate change of China,the National Natural Science Foundation of China (Nos.41674085, 41604009, and 41621091)the Natural Science Foundation of Qinghai Province (No. 2019-ZJ-7034)the Open Project of State Key Laboratory of Plateau Ecology and Agriculture,Qinghai University (No. 2020-zz-03)。
文摘A moisture advection scheme is an essential module of a numerical weather/climate model representing the horizontal transport of water vapor.The Piecewise Rational Method(PRM) scalar advection scheme in the Global/Regional Assimilation and Prediction System(GRAPES) solves the moisture flux advection equation based on PRM.Computation of the scalar advection involves boundary exchange,and computation of higher bandwidth requirements is complicated and time-consuming in GRAPES.Recently,Graphics Processing Units(GPUs) have been widely used to solve scientific and engineering computing problems owing to advancements in GPU hardware and related programming models such as CUDA/OpenCL and Open Accelerator(OpenACC).Herein,we present an accelerated PRM scalar advection scheme with Message Passing Interface(MPI) and OpenACC to fully exploit GPUs’ power over a cluster with multiple Central Processing Units(CPUs) and GPUs,together with optimization of various parameters such as minimizing data transfer,memory coalescing,exposing more parallelism,and overlapping computation with data transfers.Results show that about 3.5 times speedup is obtained for the entire model running at medium resolution with double precision when comparing the scheme’s elapsed time on a node with two GPUs(NVIDIA P100) and two 16-core CPUs(Intel Gold 6142).Further,results obtained from experiments of a higher resolution model with multiple GPUs show excellent scalability.
基金sponsored by the National Key R&D Program of China(2021YFC3000800)“Research and demonstration application of key physical processes of typhoon variable resolution prediction model”.
文摘This work use the global WRF model containing quadruply nesting with which the highest resolution reached 10 km to simulate the typhoons landed on the coast of China in 2011.The model is driven by the reanalysis data fnl with the resolution of 1°x 1°.The study assess the feasibility and applicability of the global WRF model in the 1-7 days prediction of Tropical Cyclone(TC)track by comparing it with the regional WRF model containing the same setting(physical scheme,dynamical frame,model resolution and nesting grid domain).The global model obtain a similar forecast accuracy to the regional model in 1-7 days,with a difference less than 50 km.The forecast accuracy of the global model for 1,2,3,4,5,6 and 7 days is about 70 km,120 km,180 km,240 km,320 km,400 km,and 500 km,respectively.The reason of the significant TC track errors in the forecast more than 3 or 4 days is analyzed,it is due to the poor representation of typhoon and its steering flow under the situation of binary typhoon system.The study show that the global WRF model can be exploited to proceed the high resolution TC simulation and make the TC track forecast up to 7 days but not in the case of multiple typhoon.
基金Supported by Anhui Meteorological Bureau Scientific Item under Grant No.0504,Anhui Meteorological Bureau General Project No.0601 and NKBRDPC No.2004CB418304.
文摘In this paper, a heavy rainfall process occurring in the Huaihe River Basin during 9-10 July 2005 is studied by the new generation numerical weather prediction model system-GRAPES, from the view of different initial field effects on the prediction of the model. Several numerical experiments are conducted with the initial conditions and lateral boundary fields provided by T213 L31 and NCEP final analyses, respectively. The sensitivity of prediction products generated by GRAPES to different initial conditions, including effects of three-dimensional variational assimilation on the results, is discussed. After analyzing the differences between the two initial fields and the four simulated results, the memonic ability of the model to initial fields and their influences on precipitation forecast are investigated. Analyses show the obvious differences of sub-synoptic scale between T213 and NCEP initial fields, which result in the corresponding different simulation results, and the differences do not disappear with the integration running. It also shows that for the same initial field whether it has data assimilation or not, it only obviously influences the GRAPES model results in the initial 24 h. Then the differences reduce. In addition, both the location and intensity of heavy rain forecasted by GRAPES model Further is very close to the fact, but the forecasting area of strong torrential rain has some differences from the fact. For the same initial field when it has assimilation, the 9-12-, 12-24-, and 0-24-h precipitation forecasts of the model are better than those without assimilation. All these suggest that the ability of GRAPES numerical prediction depends on the different initial fields and lateral boundary conditions to some extent, and the differences of initial fields will determine the differences of GRAPES simulated results.