In order to achieve a highly accurate estimation of solar energy resource potential,a novel hybrid ensemble-learning approach,hybridizing Advanced Squirrel-Search Optimization Algorithm(ASSOA)and support vector regres...In order to achieve a highly accurate estimation of solar energy resource potential,a novel hybrid ensemble-learning approach,hybridizing Advanced Squirrel-Search Optimization Algorithm(ASSOA)and support vector regression,is utilized to estimate the hourly tilted solar irradiation for selected arid regions in Algeria.Long-term measured meteorological data,including mean-air temperature,relative humidity,wind speed,alongside global horizontal irradiation and extra-terrestrial horizontal irradiance,were obtained for the two cities of Tamanrasset-and-Adrar for two years.Five computational algorithms were considered and analyzed for the suitability of estimation.Further two new algorithms,namely Average Ensemble and Ensemble using support vector regression were developed using the hybridization approach.The accuracy of the developed models was analyzed in terms of five statistical error metrics,as well as theWilcoxon rank-sum and ANOVA test.Among the previously selected algorithms,K Neighbors Regressor and support vector regression exhibited good performances.However,the newly proposed ensemble algorithms exhibited even better performance.The proposed model showed relative root mean square errors lower than 1.448%and correlation coefficients higher than 0.999.This was further verified by benchmarking the new ensemble against several popular swarm intelligence algorithms.It is concluded that the proposed algorithms are far superior to the commonly adopted ones.展开更多
Uttarakhand state comes under special category state where approximately 69.45% population lived in rural area under the population density with varied range of 37 to 607 persons per sq.km. Although Uttarakhand is hav...Uttarakhand state comes under special category state where approximately 69.45% population lived in rural area under the population density with varied range of 37 to 607 persons per sq.km. Although Uttarakhand is having per capita consumption of 1112.29 kWh which is higher than national average per capita consumption of 779 kWh as till date, but remote communities, villages are not able to access clean, cheep and good quality of energy due to uneven terrain, lack of proper transmission & distribution lines [1]. 100% villages are electrified under the RGGVY scheme as per the Ministry of Power Government of India, but due to poor loading of transformer, lack of grid infrastructure and natural calamities, remote house owners are not able to get good quality of power thus affect the livelihood and source of income generation in various means [2]. As Uttarakhand state having future plans to be make state energy sufficient and energy access to all by year 2016-2017, so major ground level initiative have been taken by Government of Uttarakhand. The government of Uttarakhand has incorporated innovative business model to provide good quality of power with non-conventional energy source. Under the initiative invlovement of local people and village level, panchayats have ownership and responsibility to operate these clean energy business model to improve livelihood in remote hilly places of Uttarakhand. Under this analysis, five different type of community models are categorized as Community 1, Community 2, Community 3, Standalone 1 & Standalone 2 for rural &remote communities based on number of unclustered households with the distance covered between 200 m to 20 km, and electrical loads i.e. lighting, fan, mobile chargers, television along with time of day energy consumption patterns. These community models are for remote hilly location where grid integration and distribution lines are not feasible to built due to hilly terrain, low soil strength and huge expenses for expanding power cables for supplying good quality power. The preliminary studies and simulations has been done in HOMER tool by considering the various composite source of power, i.e. Solar PV with battery bank, Solar PV with battery Bank & Generator, and Solar PV along with DG. These three hybrid source of power generation with Solar PV as base source under five different community models, the techno-commercial feasibility has been analyzed in terms of load sharing proposition with Solar PV and battery, DG, Energy production through PV, load consumption per year, Excess and unmet energy monitoring, battery sizing to meet the load during nights, DG operation when the solar energy not available due to weather condition and non availability of sunshine in night. Financial feasibility has been examined in terms of levelized cost of energy, cost summary and O&M cost per year of three integrated sources of energy generation with Solar PV under each community model. Solar PV power plant , which is the best renewable source of energy to cater energy access issue in remote hilly places. The Uttarakhand receives good amout of daily average radiation level of 5.14 - 5.50 kWh/m2/day. Financial feasible community models for different hilly region based on their energy consumption need to be implemented with the help of local community by providing ownership to local people, panchayat, for it not only caters energy access issue but also provides clean, cheep, uninterruptable energy and improves livelihood standard to locals by engaging them into operation maintenance and tariff or rent collection. The study shows that Solar PV power plant with battery bank is the optimal solution considering life cycle cost of hybrid system. It is feasible due to low operation and maintenance cost, price declination of battery and Solar PV module, battery prices at time of replacement.展开更多
The Southwest Maluku region in eastern Indonesia is considered a frontier,outermost and underdeveloped region.Its inhabitants live on isolated islands,including the residents of Mahaleta Village,where only 9.4%of the ...The Southwest Maluku region in eastern Indonesia is considered a frontier,outermost and underdeveloped region.Its inhabitants live on isolated islands,including the residents of Mahaleta Village,where only 9.4%of the community have limited access to electricity.This study aimed to design an economically feasible hybrid renewable energy(RE)system based on solar and wind energy to integrate with the productive activities of the village.The study developed conceptual schemes to meet the demand for electricity from the resi-dential,community,commercial and productive sectors of the village.The analysis was performed using a techno-economic approach.The hybrid system was designed using the HOMER Pro optimization function,and cold-storage and dryer systems were designed to support related productive activities.The optimized design of the hybrid RE system comprised 271.62 kW of solar photovoltaics,80 kW of wind turbines and a 1-MWh lead-acid battery.We found that the hybrid RE system would only be economically feasible with a full-grant incentive and an electricity tariff of$0.0808/kWh.However,the productive activity schemes were all economically feasible,with a cold-storage cost of$0.035/kg and a drying cost of$0.082/kg.Integrating the hybrid RE system with productive activities can improve the economic feasibility of the energy system and create more jobs as well as increase income for the local community.展开更多
文摘In order to achieve a highly accurate estimation of solar energy resource potential,a novel hybrid ensemble-learning approach,hybridizing Advanced Squirrel-Search Optimization Algorithm(ASSOA)and support vector regression,is utilized to estimate the hourly tilted solar irradiation for selected arid regions in Algeria.Long-term measured meteorological data,including mean-air temperature,relative humidity,wind speed,alongside global horizontal irradiation and extra-terrestrial horizontal irradiance,were obtained for the two cities of Tamanrasset-and-Adrar for two years.Five computational algorithms were considered and analyzed for the suitability of estimation.Further two new algorithms,namely Average Ensemble and Ensemble using support vector regression were developed using the hybridization approach.The accuracy of the developed models was analyzed in terms of five statistical error metrics,as well as theWilcoxon rank-sum and ANOVA test.Among the previously selected algorithms,K Neighbors Regressor and support vector regression exhibited good performances.However,the newly proposed ensemble algorithms exhibited even better performance.The proposed model showed relative root mean square errors lower than 1.448%and correlation coefficients higher than 0.999.This was further verified by benchmarking the new ensemble against several popular swarm intelligence algorithms.It is concluded that the proposed algorithms are far superior to the commonly adopted ones.
文摘Uttarakhand state comes under special category state where approximately 69.45% population lived in rural area under the population density with varied range of 37 to 607 persons per sq.km. Although Uttarakhand is having per capita consumption of 1112.29 kWh which is higher than national average per capita consumption of 779 kWh as till date, but remote communities, villages are not able to access clean, cheep and good quality of energy due to uneven terrain, lack of proper transmission & distribution lines [1]. 100% villages are electrified under the RGGVY scheme as per the Ministry of Power Government of India, but due to poor loading of transformer, lack of grid infrastructure and natural calamities, remote house owners are not able to get good quality of power thus affect the livelihood and source of income generation in various means [2]. As Uttarakhand state having future plans to be make state energy sufficient and energy access to all by year 2016-2017, so major ground level initiative have been taken by Government of Uttarakhand. The government of Uttarakhand has incorporated innovative business model to provide good quality of power with non-conventional energy source. Under the initiative invlovement of local people and village level, panchayats have ownership and responsibility to operate these clean energy business model to improve livelihood in remote hilly places of Uttarakhand. Under this analysis, five different type of community models are categorized as Community 1, Community 2, Community 3, Standalone 1 & Standalone 2 for rural &remote communities based on number of unclustered households with the distance covered between 200 m to 20 km, and electrical loads i.e. lighting, fan, mobile chargers, television along with time of day energy consumption patterns. These community models are for remote hilly location where grid integration and distribution lines are not feasible to built due to hilly terrain, low soil strength and huge expenses for expanding power cables for supplying good quality power. The preliminary studies and simulations has been done in HOMER tool by considering the various composite source of power, i.e. Solar PV with battery bank, Solar PV with battery Bank & Generator, and Solar PV along with DG. These three hybrid source of power generation with Solar PV as base source under five different community models, the techno-commercial feasibility has been analyzed in terms of load sharing proposition with Solar PV and battery, DG, Energy production through PV, load consumption per year, Excess and unmet energy monitoring, battery sizing to meet the load during nights, DG operation when the solar energy not available due to weather condition and non availability of sunshine in night. Financial feasibility has been examined in terms of levelized cost of energy, cost summary and O&M cost per year of three integrated sources of energy generation with Solar PV under each community model. Solar PV power plant , which is the best renewable source of energy to cater energy access issue in remote hilly places. The Uttarakhand receives good amout of daily average radiation level of 5.14 - 5.50 kWh/m2/day. Financial feasible community models for different hilly region based on their energy consumption need to be implemented with the help of local community by providing ownership to local people, panchayat, for it not only caters energy access issue but also provides clean, cheep, uninterruptable energy and improves livelihood standard to locals by engaging them into operation maintenance and tariff or rent collection. The study shows that Solar PV power plant with battery bank is the optimal solution considering life cycle cost of hybrid system. It is feasible due to low operation and maintenance cost, price declination of battery and Solar PV module, battery prices at time of replacement.
基金The authors are grateful to the Faculty of Engineering Universitas Indonesia for supporting this work financially under the Seed Grant Professor FTUI,Contract Number:NKB-1966/UN2.F4.D/PPM.00.00/2022.
文摘The Southwest Maluku region in eastern Indonesia is considered a frontier,outermost and underdeveloped region.Its inhabitants live on isolated islands,including the residents of Mahaleta Village,where only 9.4%of the community have limited access to electricity.This study aimed to design an economically feasible hybrid renewable energy(RE)system based on solar and wind energy to integrate with the productive activities of the village.The study developed conceptual schemes to meet the demand for electricity from the resi-dential,community,commercial and productive sectors of the village.The analysis was performed using a techno-economic approach.The hybrid system was designed using the HOMER Pro optimization function,and cold-storage and dryer systems were designed to support related productive activities.The optimized design of the hybrid RE system comprised 271.62 kW of solar photovoltaics,80 kW of wind turbines and a 1-MWh lead-acid battery.We found that the hybrid RE system would only be economically feasible with a full-grant incentive and an electricity tariff of$0.0808/kWh.However,the productive activity schemes were all economically feasible,with a cold-storage cost of$0.035/kg and a drying cost of$0.082/kg.Integrating the hybrid RE system with productive activities can improve the economic feasibility of the energy system and create more jobs as well as increase income for the local community.