期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Evaluation of regional ionospheric grid model over China from dense GPS observations 被引量:1
1
作者 Xin Zhao Shuanggen Jin +1 位作者 Cetin Mekik Jialiang Feng 《Geodesy and Geodynamics》 2016年第5期361-368,共8页
The current global or regional ionospheric models have been established for monitoring the ionospheric variations. However, the spatial and temporal resolutions are not enough to describe total electron content(TEC)... The current global or regional ionospheric models have been established for monitoring the ionospheric variations. However, the spatial and temporal resolutions are not enough to describe total electron content(TEC) variations in small scales for China. In this paper, a regional ionospheric grid model(RIGM) with high spatial-temporal resolution(0.5 0.5 and 10-min interval) in China and surrounding areas is established based on spherical harmonics expansion from dense GPS measurements provided by Crustal Movement Observation Network of China(CMONOC) and the International GNSS Service(IGS). The correlation coefficient between the estimated TEC from GPS and the ionosonde measurements is 0.97, and the root mean square(RMS) with respect to Center for Orbit Determination in Europe(CODE) Global Ionosphere Maps(GIMs) is 4.87 TECU. In addition, the impact of different spherical harmonics orders and degrees on TEC estimations are evaluated and the degree/order 6 is better. Moreover, effective ionospheric shell heights from300 km to 700 km are further assessed and the result indicates that 550 km is the most suitable for regional ionospheric modeling in China at solar maximum. 展开更多
关键词 Total electron content (TEC) regional ionospheric grid model Spherical harmonics IRI-2012 IONOSONDE
下载PDF
Theoretical study of the ionospheric dynamo region inside the South Atlantic Anomaly 被引量:1
2
作者 SiQi Yi XiaoJun Xu +5 位作者 ZiLu Zhou Qing Chang Xing Wang Lei Luo PeiShan He Hui Li 《Earth and Planetary Physics》 EI CSCD 2023年第1期84-92,共9页
The South Atlantic Anomaly(SAA)is a region where the geomagnetic field is significantly lower than that of the surrounding area.On the basis of the models of CHAOS-7.8,Mass Spectrometer Incoherent Scatter Model(NRLMSI... The South Atlantic Anomaly(SAA)is a region where the geomagnetic field is significantly lower than that of the surrounding area.On the basis of the models of CHAOS-7.8,Mass Spectrometer Incoherent Scatter Model(NRLMSISE-00),and International Reference Ionosphere 2016(IRI-2016),we theoretically investigated the lower and upper boundaries of the ionospheric dynamo region inside the SAA.In the ionospheric dynamo region,electrons are coupled with magnetic field lines,whereas ions are decoupled from magnetic field lines.Our results showed that the ionospheric dynamo region inside the SAA is higher and larger than that outside the SAA.We also studied the boundary variations of the dynamo region inside the SAA depending on the seasons and solar activities.We found that the dynamo region inside the SAA is the highest and largest in the summer of the southern hemisphere at solar maximum.The larger and higher altitude range of the ionospheric dynamo region in the SAA can contribute to the stronger ionospheric currents in this region. 展开更多
关键词 South Atlantic Anomaly ionospheric dynamo region ionosphere
下载PDF
Ionospheric disturbances following the March 2015 geomagnetic storm from GPS observations in China 被引量:1
3
作者 Wenxin Zhang Xin Zhao +1 位作者 Shuanggen Jin Junhai Li 《Geodesy and Geodynamics》 2018年第4期288-295,共8页
When strong solar activities and geomagnetic storms happen, satellite communications and navigation system will be strongly disturbed. It is of great significance to monitor ionospheric disturbances,because empirical ... When strong solar activities and geomagnetic storms happen, satellite communications and navigation system will be strongly disturbed. It is of great significance to monitor ionospheric disturbances,because empirical models cannot capture ionospheric anomalous disturbances well. Nowadays, dualfrequency GPS(Global Positioning System) observations can be used to estimate the ionospheric total electron content, correct the ionospheric delay and analyze the response of the ionosphere to geomagnetic storms. In this paper, the ionospheric response to the geomagnetic storm occurred in March 2015 is investigated using GPS observations provided by Crustal Movement of Observation Network of China. The result shows that this storm increases the electron density in the ionosphere quickly and disrupts the structure of the northern equatorial anomaly region at the beginning. In the main process stage, compared with that in the quite periods, the VTEC(Vertical Total Electron Content)around the longitude of 120°E decreases by 50% and the amount of depletion is larger in the high latitude region than that in the low latitude region. We also find the height of the peak electron density in F2 layer increases during the geomagnetic storm from the electron density profiles derived from GPS occultation mission. 展开更多
关键词 Ionospheric response regional ionospheric grid model Geomagnetic storm GPS occultation Ground-based GPS observation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部