In this paper, the method which can combine different seismic data with the different precision and completeness, even the palaeo-earthquake data, has been applied to estimate the yearly seismic moment rate in the sei...In this paper, the method which can combine different seismic data with the different precision and completeness, even the palaeo-earthquake data, has been applied to estimate the yearly seismic moment rate in the seismic region. Based on this, the predictable model of regional time-magnitude has been used in North China and Southwest China. The normal correlation between the time interval of the events and the magnitude of the last strong earthquake shows that the model is suitable. The value of the parameter c is less than the average value of 0.33 that is obtained from the events occurred in the plate boundary in the world. It is explained that the correlativity between the recurrence interval of the earthquake and the magnitude of the last strong event is not obvious. It is shown that the continental earthquakes in China are different from that occurred in the plate boundary and the recurrence model for the continental events are different from the one for the plate boundary events. Finally the seismic risk analysis based on this model for North China and Southwest China is given in this paper.展开更多
Improving the cracking resistance of steel-normal concrete(NC)composite beams in the negative moment region is one of the main tasks in designing continuous composite beam(CCB)bridges due to the low tensile strength o...Improving the cracking resistance of steel-normal concrete(NC)composite beams in the negative moment region is one of the main tasks in designing continuous composite beam(CCB)bridges due to the low tensile strength of the NC deck at pier supports.This study proposed an innovative structural configuration for the negative bending moment region in a steel-concrete CCB bridge with the aid of ultrahigh performance concrete(UHPC)layer.In order to investigate the feasibility and effectiveness of this new UHPC jointed structure in the negative bending moment region,field load testing was conducted on a newly built full-scale bridge.The newly designed structural configuration was described in detail regarding the structural characteristics(cracking resistance,economy,durability,and constructability).In the field investigation,strains on the surface of the concrete bridge deck,rebar,and steel beam in the negative bending moment region,as well as mid-span deflection,were measured under different load cases.Also,a finite element model for the four-span superstructure of the full-scale bridge was established and validated by the field test results.The simulated results in terms of strains and mid-span deflection showed moderate consistency with the test results.This field test and the finite element model results demonstrated that the new configuration with the UHPC layer provided an effective alternative for the negative bending moment region of the composite beam.展开更多
Based on the ZMP(zero moment point)trajectory and the walking data of human,a new method is proposed to improve the robot walking smoothness as well as to save energy.Firstly,a measurement system is designed to measur...Based on the ZMP(zero moment point)trajectory and the walking data of human,a new method is proposed to improve the robot walking smoothness as well as to save energy.Firstly,a measurement system is designed to measure the data of humans including the ZMP trajectory and the waist trajectory.Secondly,a new gait planning method which includes presetting the allowable ZMP region is proposed through analyzing human data.Thirdly,the new planning method is applied to the multi-link model based gait planning method.Finally,the feasibility of the proposed method is verified by simulation and experiments.展开更多
In this paper an experiment of human locomotion was carried out using a motion capture system to extract the human gait features. The modifiable key gait parameters affecting the dominant performance of biped robot wa...In this paper an experiment of human locomotion was carried out using a motion capture system to extract the human gait features. The modifiable key gait parameters affecting the dominant performance of biped robot walking were obtained from the extracted human gait features. Based on the modifiable key gait parameters and the Allowable Zero Moment Point (ZMP) Variation Region (AZR), we proposed an effective Bio-inspired Gait Planning (BGP) and control scheme for biped robot to- wards a given travel distance D. First, we construct an on-line Bio-inspired Gait Synthesis algorithm (BGSN) to generate a complete walking gait motion using the modifiable key gait parameters. Second, a Bio-inspired Gait Parameters Optimization algorithm (BGPO) is established to minimize the energy consumption of all actuators and guarantee biped robot walking with certain walking stability margin. Third, the necessary controllers for biped robot were introduced in briefly. Simulation and experiment results demonstrated the effectiveness of the proposed method, and the gait control system was implemented on DRC-XT humanoid robot.展开更多
文摘In this paper, the method which can combine different seismic data with the different precision and completeness, even the palaeo-earthquake data, has been applied to estimate the yearly seismic moment rate in the seismic region. Based on this, the predictable model of regional time-magnitude has been used in North China and Southwest China. The normal correlation between the time interval of the events and the magnitude of the last strong earthquake shows that the model is suitable. The value of the parameter c is less than the average value of 0.33 that is obtained from the events occurred in the plate boundary in the world. It is explained that the correlativity between the recurrence interval of the earthquake and the magnitude of the last strong event is not obvious. It is shown that the continental earthquakes in China are different from that occurred in the plate boundary and the recurrence model for the continental events are different from the one for the plate boundary events. Finally the seismic risk analysis based on this model for North China and Southwest China is given in this paper.
基金The authors would like to acknowledge the following funders for their support to the studies in this paper:the National Key R&D Program of China(No.2018YFC0705406)the National Natural Science Foundation of China(Grant No.51778223)+1 种基金the Major Program of Science and Technology of Hunan Province(No.2017SK1010)the Hunan Provincial Innovation Foundation for Postgraduate(No.CX2017B119).
文摘Improving the cracking resistance of steel-normal concrete(NC)composite beams in the negative moment region is one of the main tasks in designing continuous composite beam(CCB)bridges due to the low tensile strength of the NC deck at pier supports.This study proposed an innovative structural configuration for the negative bending moment region in a steel-concrete CCB bridge with the aid of ultrahigh performance concrete(UHPC)layer.In order to investigate the feasibility and effectiveness of this new UHPC jointed structure in the negative bending moment region,field load testing was conducted on a newly built full-scale bridge.The newly designed structural configuration was described in detail regarding the structural characteristics(cracking resistance,economy,durability,and constructability).In the field investigation,strains on the surface of the concrete bridge deck,rebar,and steel beam in the negative bending moment region,as well as mid-span deflection,were measured under different load cases.Also,a finite element model for the four-span superstructure of the full-scale bridge was established and validated by the field test results.The simulated results in terms of strains and mid-span deflection showed moderate consistency with the test results.This field test and the finite element model results demonstrated that the new configuration with the UHPC layer provided an effective alternative for the negative bending moment region of the composite beam.
基金the National Natural Science Foundation of China(61320106012,61533004,61375103,61673069,61321002)the 863 Program of China(2015AA043202,2015AA042305)+2 种基金the Key Technologies R&D Program(2015BAF13B01,2015BAK35B01)the Beijing Municipal Science and Technology Project(D161100003016002)the"111"Project(B08043)
文摘Based on the ZMP(zero moment point)trajectory and the walking data of human,a new method is proposed to improve the robot walking smoothness as well as to save energy.Firstly,a measurement system is designed to measure the data of humans including the ZMP trajectory and the waist trajectory.Secondly,a new gait planning method which includes presetting the allowable ZMP region is proposed through analyzing human data.Thirdly,the new planning method is applied to the multi-link model based gait planning method.Finally,the feasibility of the proposed method is verified by simulation and experiments.
基金Acknowledgment This research has been supported by Project of Science and Technology Support Plan of Jiangsu province (Grant No. BE2012057) and Science and Technology Support Plan Key Projects of Jiangsu province (Grant No. BE2013003) and National Nature Science Foundation of China (Grant No. 51405469).
文摘In this paper an experiment of human locomotion was carried out using a motion capture system to extract the human gait features. The modifiable key gait parameters affecting the dominant performance of biped robot walking were obtained from the extracted human gait features. Based on the modifiable key gait parameters and the Allowable Zero Moment Point (ZMP) Variation Region (AZR), we proposed an effective Bio-inspired Gait Planning (BGP) and control scheme for biped robot to- wards a given travel distance D. First, we construct an on-line Bio-inspired Gait Synthesis algorithm (BGSN) to generate a complete walking gait motion using the modifiable key gait parameters. Second, a Bio-inspired Gait Parameters Optimization algorithm (BGPO) is established to minimize the energy consumption of all actuators and guarantee biped robot walking with certain walking stability margin. Third, the necessary controllers for biped robot were introduced in briefly. Simulation and experiment results demonstrated the effectiveness of the proposed method, and the gait control system was implemented on DRC-XT humanoid robot.