A new technique for identifying regional climate events, the Objective Identification Technique for Regional Extreme Events(OITREE), was applied to investigate the characteristics of regional heavy rainfall events i...A new technique for identifying regional climate events, the Objective Identification Technique for Regional Extreme Events(OITREE), was applied to investigate the characteristics of regional heavy rainfall events in China during the period1961–2012. In total, 373 regional heavy rainfall events(RHREs) were identified during the past 52 years. The East Asian summer monsoon(EASM) had an important influence on the annual variations of China's RHRE activities, with a significant relationship between the intensity of the RHREs and the intensity of the Mei-yu. Although the increase in the frequency of those RHREs was not significant, China experienced more severe and extreme regional rainfall events in the 1990 s. The middle and lower reaches of the Yangtze River and the northern part of South China were the regions in the country most susceptible to extreme precipitation events. Some stations showed significant increasing trends in the southern part of the middle and lower reaches of the Yangtze River and the northern part of South China, while parts of North China, regions between Guangxi and Guangdong, and northern Sichuan showed decreasing trends in the accumulated intensity of RHREs.The spatial distribution of the linear trends of events' accumulated intensity displayed a similar so-called "southern flooding and northern drought" pattern over eastern China in recent decades.展开更多
Senegal is a country of the Sahel. In this region, most of the populations live from agro-pastoral activities. The northern zone of Senegal is strongly influenced by river cultures. And the dynamics of the Senegal Riv...Senegal is a country of the Sahel. In this region, most of the populations live from agro-pastoral activities. The northern zone of Senegal is strongly influenced by river cultures. And the dynamics of the Senegal River are dependent on rainfall. The rainfall in the area is very closely linked to the dynamics of the atmosphere. The study of the spatio-temporal variability of rainfall in the northern region of Senegal requires quality rainfall observation data. It includes the Ferlo and the Senegal River valley, in particular the regions of Louga (department of Linguère included), Saint-Louis (departments of Dagana and Podor included) and Matam. These stations have been defined since Le Borgne (1988). The difficulty of having quality rain observation data can be resolved by using more accessible and good quality satellite data. Using satellite data, namely MSWEP, CRU, TAMSAT, ARC and PERSIANN, we showed the return of precipitation that appeared in 2000 and the unimodal cycle of precipitation in our study area. These data were validated using the correlation coefficient, the bias, the RMSE and the Nash index with observation data from the Regional Study Center for the Improvement of Adaptation to Drought (CERASS). The CRU data is then retained. Thus, this study made it possible to show the zonal distribution of rainfall in the northern zone of Senegal.展开更多
This study delves into the multiple weather systems and their interaction mechanisms that caused the severe rainfall event in Northeast China in early August 2023. The analysis reveals that the atmospheric circulation...This study delves into the multiple weather systems and their interaction mechanisms that caused the severe rainfall event in Northeast China in early August 2023. The analysis reveals that the atmospheric circulation in the mid-to-high latitudes of the Eurasian continent exhibited a significant “two troughs and two ridges” structure, with Northeast China located precisely in the peripheral region of the subtropical high, significantly influenced by its marginal airflows. Additionally, the residual circulation of Typhoon “Doksuri” interacting with the subtropical high and upper-level troughs significantly increased the rainfall intensity and duration in the region. In particular, the continuous and powerful transport of the southwest jet provided the necessary moisture and unstable conditions for the generation and development of convective systems. The rainfall event resulted in nearly 40,000 people affected and crop damage covering an area of approximately 4000 hectares, demonstrating the severity of extreme weather. The study emphasizes that strengthening meteorological monitoring and early warning systems, as well as formulating and improving emergency response mechanisms, are crucial for reducing potential disaster losses caused by heavy rainfall. Future research can further explore the interaction mechanisms among weather systems, limitations of data sources, and the connection between long-term trends of heavy rainfall events and global climate change.展开更多
Using the center of figure method and center of mass method, precipitation and heavy precipitation processes caused by No. 9 typhoon " Muifa" in 2011 were analyzed based on helicity, and the mechanism of typhoon rai...Using the center of figure method and center of mass method, precipitation and heavy precipitation processes caused by No. 9 typhoon " Muifa" in 2011 were analyzed based on helicity, and the mechanism of typhoon rainfall was interpreted from the relation between helicity and ener- gy. The results showed that horizontal helicity checked the diffusion of nonlinear energy and maintained the development of the system. Precipitati- on mainly appeared on the southeast of vertical helicity, while heavy precipitation mainly occurred on its southwest. Compared with the center of fig- ure method, the center of mass method had good results, especially for heavy precipitation. Vertical helicity at 700 hPa reflected system deviation in rainfall regions well and had the best correction effect on rainfall intensity and regions展开更多
On the basis, of the surface heat fluxes of the Kuroshio key-area (26°-30°N, 125°-30°E)in March andApril, the climatologicai influence of the Kuroshio heat fluxes on meiyu rainfall in the Changjian...On the basis, of the surface heat fluxes of the Kuroshio key-area (26°-30°N, 125°-30°E)in March andApril, the climatologicai influence of the Kuroshio heat fluxes on meiyu rainfall in the Changjiang River (Yangtse River) region are studied. The results are concluded as follows;the surface heat fluxes of the Kuroshio key-area have certain influence on meiyu rainfall in the Changjiang River region during June and July. The correctness rates for the five stations in the Changjing River region (i. e. Wuhan, Jiujiang, Anqing,Nanjing and Shanghai)are in the range of 9/20-13/20. The surface heat fluxes influence mainly on the homogeneous rainfall pattern,the correctness rates come to 7/10-8/10 for the lower valley of the Changjiang River. The estimation expression of the meiyu rainfall for Shanghai consisting of the surface heat flux and the sea surface temperature anomaly of the Kuroshio key area agrees well with the actual meiyu rainfall condition.展开更多
Uncertainty exists widely in hydrological analysis, and this makes the process of uncertainty assessment very im- portant for making robust decisions. In this study, uncertainty sources in regional rainfall frequency ...Uncertainty exists widely in hydrological analysis, and this makes the process of uncertainty assessment very im- portant for making robust decisions. In this study, uncertainty sources in regional rainfall frequency analysis are identified for the first time. The numeral unite spread assessment pedigree (NUSAP) method is introduced and is first employed to quantify qual- itative uncertainty in regional rainfall frequency analysis. A pedigree matrix is particularly designed for regional rainfall frequency analysis, by which the qualitative uncertainty can be quantified. Finally, the qualitative and quantitative uncertainties are com- bined in an uncertainty diagnostic diagram, which makes the uncertainty evaluation results more intuitive. From the integrated diagnostic diagram, it can be determined that the uncertainty caused by the precipitation data is the smallest, and the uncertainty from different grouping methods is the largest. For the downstream sub-region, a generalized extreme value (GEV) distribution is better than a generalized logistic (GLO) distribution; for the south sub-region, a Pearson type III (PE3) distribution is the better choice; and for the north sub-region, GEV is more appropriate.展开更多
Atmospheric winds from observations and medium-range weather forecast model predictions can be physically decomposed as daily climate wind,planetary-scale anomalous wind,and synoptic-scale anomalous wind.The 850 hPa s...Atmospheric winds from observations and medium-range weather forecast model predictions can be physically decomposed as daily climate wind,planetary-scale anomalous wind,and synoptic-scale anomalous wind.The 850 hPa synoptic-scale anomalous winds were extracted from the numerical model outputs of the European Centre for Medium-Range Weather Forecasts(ECMWF) and the NCEP Global Forecast System(GFS).The results showed that most rain bands in eastern China in 2010 were located along the anomalous convergence lines.To predict the major rain bands by these convergence lines in 2010,the accuracies of the ECMWF products were 100%,85%,and 15% for leading 3,6,and 9 days,while the GFS products showed 53%,15%,and 6% accuracies,respectively.In comparison of the regional heavy rainfalls between observation and the ECMWF model prediction,the useful leading information was about 3.1 days for direct model rain prediction and 6.7 days for convergence systems predicted by ECMWF model.展开更多
Based on the NCEP/NCAR reanalysis dataset and in situ meteorological observations of daily precipitation in boreal summer from 1979 to 2008, the features of circulation anomalies have been investigated using the compo...Based on the NCEP/NCAR reanalysis dataset and in situ meteorological observations of daily precipitation in boreal summer from 1979 to 2008, the features of circulation anomalies have been investigated using the composite analysis for the extreme events and non-extreme events of regional mean daily rainfall(RMDR) occurring over the midand lower- Yangtze valley(MLYV). The extreme RMDR(ERMDR) events are the events at and above the percentile99 in the rearranged time-series of the RMDR with ascending order of rainfall amount. The non-extreme RMDR events are those at the percentiles 90-85 and 80-75 separately. Our results suggest that the threshold value is 25 mm/day for the ERMDR at percentile 99. Precipitation at all the percentiles is found to occur more frequently in the Meiyu rainfall season in MLYV, and the ERMDR events have occurred with higher frequency since the 1990 s. For the percentiles-associated events, the MLYV is under the control of an anomalous cyclonic circulation in the mid- and lower- troposphere with vastly different anomalous circulation at higher levels. However, at both low and high levels, the ERMDR events-related anomalous circulation is stronger compared to that linked to the non-ERMDR events. The dominant sources of water vapor differ between the ERMDR and non-ERMDR events. During the ERMDR events plentiful water vapor is transported from the Bay of Bengal into the MLYV directly by divergence while there is distinctly increased water vapor from the South China Sea(SCS) in non-RMERMDR episodes. The diabatic heating rates < Q1>, < Q2> and< Q1>- < Q2> have their anomalous patterns and are consistent with each other for these percentiles but their strength decreases markedly with the drop of rainfall intensity. For the precipitation at percentiles 99 and 90-85, the sea surface temperature anomalies(SSTA) in the Pacific distribute positively(negatively) in the south(north), and are stronger when the ERMDR emerges, with little or no SSTA as the events at percentile 80-75 occur. Besides, these results suggest that the genesis of the ERMDR event is directly related to intense local circulation anomalies and the circulation anomalies over the Pacific and SCS in tropical to mid-latitudes, and probably linked with the Pacific SSTA closely while the non-ERMDR events are mainly associated with the anomalous circulation on a local basis. The findings here help understand and predict the happening of ERMDR events over the MLYV.展开更多
This study employs a newly defined regional-rainfall-event (RRE) concept to compare the hourly charac- teristics of warm-season (May September) rainfall among rain gauge observations, China merged hourly pre- cipi...This study employs a newly defined regional-rainfall-event (RRE) concept to compare the hourly charac- teristics of warm-season (May September) rainfall among rain gauge observations, China merged hourly pre- cipitation analysis (CMPA-Hourly), and two commonly used satellite products (TRMM 3B42 and CMORPH) By considering the rainfall characteristics in a given limited area rather than a single point or grid, this method largely eliminates the differences in rainfall characteristics among different observations or measure- ments over central-eastern China. The results show that the spatial distribution and diurnal variation of RRE frequency and intensity are quite consistent among different datasets, and the performance of CMPA- Hourly is better than the satellite products when compared with station observations. A regional rainfall coefficient (RRC), which can be used to classify local rain and regional rain, is employed to represent the spatial spread of rainfall in the limited region defining the RRE. It is found that rainfall spread in the selected grid box is more uniform during the nocturnal to morning hours over central-eastern China. The RRC tends to reach its diurnal maximum several hours after the RRE intensity peaks, implying an in- termediate transition stage from convective to stratiform rainfall. In the afternoon, the RRC reaches its minimum, implying the dominance of local convections on small spatial scale in those hours, which could cause large differences in rain gauge and satellite observations. Since the RRE method reflects the overall features of rainfall in a limited region rather than at a fixed point or in a single grid, the widely recognized overestimation of afternoon rainfall in satellite products is more reliable in representing sub-daily variation of rainfall a reasonable method to compare satellite products with which also has great potential to be used in evaluating the numerical models. not obvious, and thus the satellite estimates are from the RRE perspective. This study proposes rain gauge observations on the sub-daily scale, spatiotemporal variation of cloud and rainfall in展开更多
基金supported jointly by the National Natural Science Foundation of China (Grant No. 41175075)the Major State Basic Research Development Program of China (973 program) (Grant No. 2010CB950501)
文摘A new technique for identifying regional climate events, the Objective Identification Technique for Regional Extreme Events(OITREE), was applied to investigate the characteristics of regional heavy rainfall events in China during the period1961–2012. In total, 373 regional heavy rainfall events(RHREs) were identified during the past 52 years. The East Asian summer monsoon(EASM) had an important influence on the annual variations of China's RHRE activities, with a significant relationship between the intensity of the RHREs and the intensity of the Mei-yu. Although the increase in the frequency of those RHREs was not significant, China experienced more severe and extreme regional rainfall events in the 1990 s. The middle and lower reaches of the Yangtze River and the northern part of South China were the regions in the country most susceptible to extreme precipitation events. Some stations showed significant increasing trends in the southern part of the middle and lower reaches of the Yangtze River and the northern part of South China, while parts of North China, regions between Guangxi and Guangdong, and northern Sichuan showed decreasing trends in the accumulated intensity of RHREs.The spatial distribution of the linear trends of events' accumulated intensity displayed a similar so-called "southern flooding and northern drought" pattern over eastern China in recent decades.
文摘Senegal is a country of the Sahel. In this region, most of the populations live from agro-pastoral activities. The northern zone of Senegal is strongly influenced by river cultures. And the dynamics of the Senegal River are dependent on rainfall. The rainfall in the area is very closely linked to the dynamics of the atmosphere. The study of the spatio-temporal variability of rainfall in the northern region of Senegal requires quality rainfall observation data. It includes the Ferlo and the Senegal River valley, in particular the regions of Louga (department of Linguère included), Saint-Louis (departments of Dagana and Podor included) and Matam. These stations have been defined since Le Borgne (1988). The difficulty of having quality rain observation data can be resolved by using more accessible and good quality satellite data. Using satellite data, namely MSWEP, CRU, TAMSAT, ARC and PERSIANN, we showed the return of precipitation that appeared in 2000 and the unimodal cycle of precipitation in our study area. These data were validated using the correlation coefficient, the bias, the RMSE and the Nash index with observation data from the Regional Study Center for the Improvement of Adaptation to Drought (CERASS). The CRU data is then retained. Thus, this study made it possible to show the zonal distribution of rainfall in the northern zone of Senegal.
文摘This study delves into the multiple weather systems and their interaction mechanisms that caused the severe rainfall event in Northeast China in early August 2023. The analysis reveals that the atmospheric circulation in the mid-to-high latitudes of the Eurasian continent exhibited a significant “two troughs and two ridges” structure, with Northeast China located precisely in the peripheral region of the subtropical high, significantly influenced by its marginal airflows. Additionally, the residual circulation of Typhoon “Doksuri” interacting with the subtropical high and upper-level troughs significantly increased the rainfall intensity and duration in the region. In particular, the continuous and powerful transport of the southwest jet provided the necessary moisture and unstable conditions for the generation and development of convective systems. The rainfall event resulted in nearly 40,000 people affected and crop damage covering an area of approximately 4000 hectares, demonstrating the severity of extreme weather. The study emphasizes that strengthening meteorological monitoring and early warning systems, as well as formulating and improving emergency response mechanisms, are crucial for reducing potential disaster losses caused by heavy rainfall. Future research can further explore the interaction mechanisms among weather systems, limitations of data sources, and the connection between long-term trends of heavy rainfall events and global climate change.
文摘Using the center of figure method and center of mass method, precipitation and heavy precipitation processes caused by No. 9 typhoon " Muifa" in 2011 were analyzed based on helicity, and the mechanism of typhoon rainfall was interpreted from the relation between helicity and ener- gy. The results showed that horizontal helicity checked the diffusion of nonlinear energy and maintained the development of the system. Precipitati- on mainly appeared on the southeast of vertical helicity, while heavy precipitation mainly occurred on its southwest. Compared with the center of fig- ure method, the center of mass method had good results, especially for heavy precipitation. Vertical helicity at 700 hPa reflected system deviation in rainfall regions well and had the best correction effect on rainfall intensity and regions
文摘On the basis, of the surface heat fluxes of the Kuroshio key-area (26°-30°N, 125°-30°E)in March andApril, the climatologicai influence of the Kuroshio heat fluxes on meiyu rainfall in the Changjiang River (Yangtse River) region are studied. The results are concluded as follows;the surface heat fluxes of the Kuroshio key-area have certain influence on meiyu rainfall in the Changjiang River region during June and July. The correctness rates for the five stations in the Changjing River region (i. e. Wuhan, Jiujiang, Anqing,Nanjing and Shanghai)are in the range of 9/20-13/20. The surface heat fluxes influence mainly on the homogeneous rainfall pattern,the correctness rates come to 7/10-8/10 for the lower valley of the Changjiang River. The estimation expression of the meiyu rainfall for Shanghai consisting of the surface heat flux and the sea surface temperature anomaly of the Kuroshio key area agrees well with the actual meiyu rainfall condition.
基金the National Natural Science Foundation of China,the Zhejiang Provincial Natural Science Foundation of China
文摘Uncertainty exists widely in hydrological analysis, and this makes the process of uncertainty assessment very im- portant for making robust decisions. In this study, uncertainty sources in regional rainfall frequency analysis are identified for the first time. The numeral unite spread assessment pedigree (NUSAP) method is introduced and is first employed to quantify qual- itative uncertainty in regional rainfall frequency analysis. A pedigree matrix is particularly designed for regional rainfall frequency analysis, by which the qualitative uncertainty can be quantified. Finally, the qualitative and quantitative uncertainties are com- bined in an uncertainty diagnostic diagram, which makes the uncertainty evaluation results more intuitive. From the integrated diagnostic diagram, it can be determined that the uncertainty caused by the precipitation data is the smallest, and the uncertainty from different grouping methods is the largest. For the downstream sub-region, a generalized extreme value (GEV) distribution is better than a generalized logistic (GLO) distribution; for the south sub-region, a Pearson type III (PE3) distribution is the better choice; and for the north sub-region, GEV is more appropriate.
基金supported by the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY201306013)
文摘Atmospheric winds from observations and medium-range weather forecast model predictions can be physically decomposed as daily climate wind,planetary-scale anomalous wind,and synoptic-scale anomalous wind.The 850 hPa synoptic-scale anomalous winds were extracted from the numerical model outputs of the European Centre for Medium-Range Weather Forecasts(ECMWF) and the NCEP Global Forecast System(GFS).The results showed that most rain bands in eastern China in 2010 were located along the anomalous convergence lines.To predict the major rain bands by these convergence lines in 2010,the accuracies of the ECMWF products were 100%,85%,and 15% for leading 3,6,and 9 days,while the GFS products showed 53%,15%,and 6% accuracies,respectively.In comparison of the regional heavy rainfalls between observation and the ECMWF model prediction,the useful leading information was about 3.1 days for direct model rain prediction and 6.7 days for convergence systems predicted by ECMWF model.
基金National Natural Science Foundation of China(41330425)National Key Technology R&D Program(2007BAC29B02)"Qinglan"Project of Jiangsu Province for Cultivating Research Teams
文摘Based on the NCEP/NCAR reanalysis dataset and in situ meteorological observations of daily precipitation in boreal summer from 1979 to 2008, the features of circulation anomalies have been investigated using the composite analysis for the extreme events and non-extreme events of regional mean daily rainfall(RMDR) occurring over the midand lower- Yangtze valley(MLYV). The extreme RMDR(ERMDR) events are the events at and above the percentile99 in the rearranged time-series of the RMDR with ascending order of rainfall amount. The non-extreme RMDR events are those at the percentiles 90-85 and 80-75 separately. Our results suggest that the threshold value is 25 mm/day for the ERMDR at percentile 99. Precipitation at all the percentiles is found to occur more frequently in the Meiyu rainfall season in MLYV, and the ERMDR events have occurred with higher frequency since the 1990 s. For the percentiles-associated events, the MLYV is under the control of an anomalous cyclonic circulation in the mid- and lower- troposphere with vastly different anomalous circulation at higher levels. However, at both low and high levels, the ERMDR events-related anomalous circulation is stronger compared to that linked to the non-ERMDR events. The dominant sources of water vapor differ between the ERMDR and non-ERMDR events. During the ERMDR events plentiful water vapor is transported from the Bay of Bengal into the MLYV directly by divergence while there is distinctly increased water vapor from the South China Sea(SCS) in non-RMERMDR episodes. The diabatic heating rates < Q1>, < Q2> and< Q1>- < Q2> have their anomalous patterns and are consistent with each other for these percentiles but their strength decreases markedly with the drop of rainfall intensity. For the precipitation at percentiles 99 and 90-85, the sea surface temperature anomalies(SSTA) in the Pacific distribute positively(negatively) in the south(north), and are stronger when the ERMDR emerges, with little or no SSTA as the events at percentile 80-75 occur. Besides, these results suggest that the genesis of the ERMDR event is directly related to intense local circulation anomalies and the circulation anomalies over the Pacific and SCS in tropical to mid-latitudes, and probably linked with the Pacific SSTA closely while the non-ERMDR events are mainly associated with the anomalous circulation on a local basis. The findings here help understand and predict the happening of ERMDR events over the MLYV.
基金Supported by the Outstanding Tutors for Doctoral Dissertations of S&T Project in Beijing(20138005801)National Natural Science Foundation of China(41375004)Basic Scientific Research and Operation Foundation of the Chinese Academy of Meteorological Sciences(2014R013)
文摘This study employs a newly defined regional-rainfall-event (RRE) concept to compare the hourly charac- teristics of warm-season (May September) rainfall among rain gauge observations, China merged hourly pre- cipitation analysis (CMPA-Hourly), and two commonly used satellite products (TRMM 3B42 and CMORPH) By considering the rainfall characteristics in a given limited area rather than a single point or grid, this method largely eliminates the differences in rainfall characteristics among different observations or measure- ments over central-eastern China. The results show that the spatial distribution and diurnal variation of RRE frequency and intensity are quite consistent among different datasets, and the performance of CMPA- Hourly is better than the satellite products when compared with station observations. A regional rainfall coefficient (RRC), which can be used to classify local rain and regional rain, is employed to represent the spatial spread of rainfall in the limited region defining the RRE. It is found that rainfall spread in the selected grid box is more uniform during the nocturnal to morning hours over central-eastern China. The RRC tends to reach its diurnal maximum several hours after the RRE intensity peaks, implying an in- termediate transition stage from convective to stratiform rainfall. In the afternoon, the RRC reaches its minimum, implying the dominance of local convections on small spatial scale in those hours, which could cause large differences in rain gauge and satellite observations. Since the RRE method reflects the overall features of rainfall in a limited region rather than at a fixed point or in a single grid, the widely recognized overestimation of afternoon rainfall in satellite products is more reliable in representing sub-daily variation of rainfall a reasonable method to compare satellite products with which also has great potential to be used in evaluating the numerical models. not obvious, and thus the satellite estimates are from the RRE perspective. This study proposes rain gauge observations on the sub-daily scale, spatiotemporal variation of cloud and rainfall in