期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Local Region Molecular Dynamics Simulation Method for Nanoscale Sliding Contacts
1
作者 Rui-Ting Tong Geng Liu Tian-Xiang Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第5期119-126,共8页
Computational e ciency and accuracy always conflict with each other in molecular dynamics(MD) simulations. How to enhance the computational e ciency and keep accuracy at the same time is concerned by each correspondin... Computational e ciency and accuracy always conflict with each other in molecular dynamics(MD) simulations. How to enhance the computational e ciency and keep accuracy at the same time is concerned by each corresponding researcher. However, most of the current studies focus on MD algorithms, and if the scale of MD model could be reduced, the algorithms would be more meaningful. A local region molecular dynamics(LRMD) simulation method which can meet these two factors concurrently in nanoscale sliding contacts is developed in this paper. Full MD simulation is used to simulate indentation process before sliding. A criterion called contribution of displacement is presented, which is used to determine the e ective local region in the MD model after indentation. By using the local region, nanoscale sliding contact between a rigid cylindrical tip and an elastic substrate is investigated. Two two?dimensional MD models are presented, and the friction forces from LRMD simulations agree well with that from full MD simulations, which testifies the e ectiveness of the LRMD simulation method for two?dimensional cases. A three?dimensional MD model for sliding contacts is developed then to show the validity of the LRMD simulation method further. Finally, a discussion is carried out by the principles of tribology. In the discussion, two two?dimensional full MD models are used to simulate the nanoscale sliding contact problems. The results indicate that original smaller model will induce higher equivalent scratching depth, and then results in higher friction forces, which will help to explain the mechanism how the LRMD simulation method works. This method can be used to reduce the scale of MD model in large scale simulations, and it will enhance the computational e ciency without losing accuracy during the simula?tion of nanoscale sliding contacts. 展开更多
关键词 Local region molecular dynamics simulation NANOSCALE Sliding contacts Contribution of displacement
下载PDF
Computer Simulation of Plastic Deformation in GrainBoundary Region under High Rate Loading
2
作者 K.P.Zolnikov S.G.Psakhie S-I.Negrskul and S. Yu.Korostelev (Institute of Strength Physics and Materials Science, Russian Academy of Sicences, Siberian Branch,Akademicheskii pr.2/1, 634048 Tomsk, Russia)(To whom correspondence should be addressed) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1996年第3期235-237,共3页
The computer simulation of Al three-dimensional crystallite containing grain boundary of special type was carried out and its behaviour under high rate loading was investigated. The molecular dynamics method was used ... The computer simulation of Al three-dimensional crystallite containing grain boundary of special type was carried out and its behaviour under high rate loading was investigated. The molecular dynamics method was used and interaction betwen atoms was described based on pseudopotential method. Vortical character of the atom movements in the grain boundary region is realized under shear loading in certain directions. Back and forth movements of atoms in the direction which is perpendicular to the shear also arise. Amplitude of such movements is approximately equal to an interplanar distance in this direction. 展开更多
关键词 simulation Computer simulation of Plastic Deformation in GrainBoundary Region under High Rate Loading
下载PDF
A spatially distributed,deterministic approach to modeling Typha domingensis(cattail)in an Everglades wetland
3
作者 Gareth Lagerwall Gregory Kiker +3 位作者 Rafael Muñoz-Carpena Matteo Convertino Andrew James Naiming Wang 《Ecological Processes》 SCIE EI 2012年第1期12-32,共21页
Introduction:The emergent wetland species Typha domingensis(cattail)is a native Florida Everglades monocotyledonous macrophyte.It has become invasive due to anthropogenic disturbances and is out-competing other vegeta... Introduction:The emergent wetland species Typha domingensis(cattail)is a native Florida Everglades monocotyledonous macrophyte.It has become invasive due to anthropogenic disturbances and is out-competing other vegetation in the region,especially in areas historically dominated by Cladium jamaicense(sawgrass).There is a need for a quantitative,deterministic model in order to accurately simulate the regional-scale cattail dynamics in the Everglades.Methods:The Regional Simulation Model(RSM),combined with the Transport and Reaction Simulation Engine(TARSE),was adapted to simulate ecology.This provides a framework for user-defineable equations and relationships and enables multiple theories with different levels of complexity to be tested simultaneously.Five models,or levels,of increasing complexity were used to simulate cattail dynamics across Water Conservation Area 2A(WCA2A),which is located just south of Lake Okeechobee,in Florida,USA.These levels of complexity were formulated to correspond with five hypotheses regarding the growth and spread of cattail.The first level of complexity assumed a logistic growth pattern to test whether cattail growth is density dependent.The second level of complexity built on the first and included a Habitat Suitability Index(HSI)factor influenced by water depth to test whether this might be an important factor for cattail expansion.The third level of complexity built on the second and included an HSI factor influenced by soil phosphorus concentration to test whether this is a contributing factor for cattail expansion.The fourth level of complexity built on the third and included an HSI factor influenced by(a level 1–simulated)sawgrass density to determine whether sawgrass density impacted the rate of cattail expansion.The fifth level of complexity built on the fourth and included a feedback mechanism whereby the cattail densities influenced the sawgrass densities to determine the impact of inter-species interactions on the cattail dynamics.Results:All the simulation results from the different levels of complexity were compared to observed data for the years 1995 and 2003.Their performance was analyzed using a number of different statistics that each represent a different perspective on the ecological dynamics of the system.These statistics include box-plots,abundance-area curves,Moran’s I,and classified difference.The statistics were summarized using the Nash-Sutcliffe coefficient.The results from all of these comparisons indicate that the more complex level 4 and level 5 models were able to simulate the observed data with a reasonable degree of accuracy.Conclusions:A user-defineable,quantitative,deterministic modeling framework was introduced and tested against various hypotheses.It was determined that the more complex models(levels 4 and 5)were able to adequately simulate the observed patterns of cattail densities within the WCA2A region.These models require testing for uncertainty and sensitivity of their various parameters in order to better understand them but could eventually be used to provide insight for management decisions concerning the WCA2A region and the Everglades in general. 展开更多
关键词 TYPHA MODELING Ecology Dynamics Model complexity Water conservation area 2A Transport and reaction simulation engine Regional simulation model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部