Multi-modal histological image registration tasks pose significant challenges due to tissue staining operations causing partial loss and folding of tissue.Convolutional neural network(CNN)and generative adversarial ne...Multi-modal histological image registration tasks pose significant challenges due to tissue staining operations causing partial loss and folding of tissue.Convolutional neural network(CNN)and generative adversarial network(GAN)are pivotal inmedical image registration.However,existing methods often struggle with severe interference and deformation,as seen in histological images of conditions like Cushing’s disease.We argue that the failure of current approaches lies in underutilizing the feature extraction capability of the discriminator inGAN.In this study,we propose a novel multi-modal registration approach GAN-DIRNet based on GAN for deformable histological image registration.To begin with,the discriminators of two GANs are embedded as a new dual parallel feature extraction module into the unsupervised registration networks,characterized by implicitly extracting feature descriptors of specific modalities.Additionally,modal feature description layers and registration layers collaborate in unsupervised optimization,facilitating faster convergence and more precise results.Lastly,experiments and evaluations were conducted on the registration of the Mixed National Institute of Standards and Technology database(MNIST),eight publicly available datasets of histological sections and the Clustering-Registration-Classification-Segmentation(CRCS)dataset on the Cushing’s disease.Experimental results demonstrate that our proposed GAN-DIRNet method surpasses existing approaches like DIRNet in terms of both registration accuracy and time efficiency,while also exhibiting robustness across different image types.展开更多
BACKGROUND It has been confirmed that three-dimensional(3D)imaging allows easier identification of bile duct anatomy and intraoperative guidance of endoscopic retrograde cholangiopancreatography(ERCP),which reduces th...BACKGROUND It has been confirmed that three-dimensional(3D)imaging allows easier identification of bile duct anatomy and intraoperative guidance of endoscopic retrograde cholangiopancreatography(ERCP),which reduces the radiation dose and procedure time with improved safety.However,current 3D biliary imaging does not have good real-time fusion with intraoperative imaging,a process meant to overcome the influence of intraoperative respiratory motion and guide navigation.The present study explored the feasibility of real-time continuous image-guided ERCP.AIM To explore the feasibility of real-time continuous image-guided ERCP.METHODS We selected 23D-printed abdominal biliary tract models with different structures to simulate different patients.The ERCP environment was simulated for the biliary phantom experiment to create a navigation system,which was further tested in patients.In addition,based on the estimation of the patient’s respiratory motion,preoperative 3D biliary imaging from computed tomography of 18 patients with cholelithiasis was registered and fused in real-time with 2D fluoroscopic sequence generated by the C-arm unit during ERCP.RESULTS Continuous image-guided ERCP was applied in the biliary phantom with a registration error of 0.46 mm±0.13 mm and a tracking error of 0.64 mm±0.24mm.After estimating the respiratory motion,3D/2D registration accurately transformed preoperative 3D biliary images to each image in the X-ray image sequence in real-time in 18 patients,with an average fusion rate of 88%.CONCLUSION Continuous image-guided ERCP may be an effective approach to assist the operator and reduce the use of X-ray and contrast agents.展开更多
文摘Multi-modal histological image registration tasks pose significant challenges due to tissue staining operations causing partial loss and folding of tissue.Convolutional neural network(CNN)and generative adversarial network(GAN)are pivotal inmedical image registration.However,existing methods often struggle with severe interference and deformation,as seen in histological images of conditions like Cushing’s disease.We argue that the failure of current approaches lies in underutilizing the feature extraction capability of the discriminator inGAN.In this study,we propose a novel multi-modal registration approach GAN-DIRNet based on GAN for deformable histological image registration.To begin with,the discriminators of two GANs are embedded as a new dual parallel feature extraction module into the unsupervised registration networks,characterized by implicitly extracting feature descriptors of specific modalities.Additionally,modal feature description layers and registration layers collaborate in unsupervised optimization,facilitating faster convergence and more precise results.Lastly,experiments and evaluations were conducted on the registration of the Mixed National Institute of Standards and Technology database(MNIST),eight publicly available datasets of histological sections and the Clustering-Registration-Classification-Segmentation(CRCS)dataset on the Cushing’s disease.Experimental results demonstrate that our proposed GAN-DIRNet method surpasses existing approaches like DIRNet in terms of both registration accuracy and time efficiency,while also exhibiting robustness across different image types.
文摘BACKGROUND It has been confirmed that three-dimensional(3D)imaging allows easier identification of bile duct anatomy and intraoperative guidance of endoscopic retrograde cholangiopancreatography(ERCP),which reduces the radiation dose and procedure time with improved safety.However,current 3D biliary imaging does not have good real-time fusion with intraoperative imaging,a process meant to overcome the influence of intraoperative respiratory motion and guide navigation.The present study explored the feasibility of real-time continuous image-guided ERCP.AIM To explore the feasibility of real-time continuous image-guided ERCP.METHODS We selected 23D-printed abdominal biliary tract models with different structures to simulate different patients.The ERCP environment was simulated for the biliary phantom experiment to create a navigation system,which was further tested in patients.In addition,based on the estimation of the patient’s respiratory motion,preoperative 3D biliary imaging from computed tomography of 18 patients with cholelithiasis was registered and fused in real-time with 2D fluoroscopic sequence generated by the C-arm unit during ERCP.RESULTS Continuous image-guided ERCP was applied in the biliary phantom with a registration error of 0.46 mm±0.13 mm and a tracking error of 0.64 mm±0.24mm.After estimating the respiratory motion,3D/2D registration accurately transformed preoperative 3D biliary images to each image in the X-ray image sequence in real-time in 18 patients,with an average fusion rate of 88%.CONCLUSION Continuous image-guided ERCP may be an effective approach to assist the operator and reduce the use of X-ray and contrast agents.