期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Modeling of Total Dissolved Solids (TDS) and Sodium Absorption Ratio (SAR) in the Edwards-Trinity Plateau and Ogallala Aquifers in the Midland-Odessa Region Using Random Forest Regression and eXtreme Gradient Boosting
1
作者 Azuka I. Udeh Osayamen J. Imarhiagbe Erepamo J. Omietimi 《Journal of Geoscience and Environment Protection》 2024年第5期218-241,共24页
Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. ... Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. The above statement holds for West Texas, Midland, and Odessa Precisely. Two machine learning regression algorithms (Random Forest and XGBoost) were employed to develop models for the prediction of total dissolved solids (TDS) and sodium absorption ratio (SAR) for efficient water quality monitoring of two vital aquifers: Edward-Trinity (plateau), and Ogallala aquifers. These two aquifers have contributed immensely to providing water for different uses ranging from domestic, agricultural, industrial, etc. The data was obtained from the Texas Water Development Board (TWDB). The XGBoost and Random Forest models used in this study gave an accurate prediction of observed data (TDS and SAR) for both the Edward-Trinity (plateau) and Ogallala aquifers with the R<sup>2</sup> values consistently greater than 0.83. The Random Forest model gave a better prediction of TDS and SAR concentration with an average R, MAE, RMSE and MSE of 0.977, 0.015, 0.029 and 0.00, respectively. For the XGBoost, an average R, MAE, RMSE, and MSE of 0.953, 0.016, 0.037 and 0.00, respectively, were achieved. The overall performance of the models produced was impressive. From this study, we can clearly understand that Random Forest and XGBoost are appropriate for water quality prediction and monitoring in an area of high hydrocarbon activities like Midland and Odessa and West Texas at large. 展开更多
关键词 Water Quality Prediction Predictive Modeling Aquifers machine learning regression eXtreme Gradient Boosting
下载PDF
Maximum power point tracking using decision-tree machine-learning algorithm for photovoltaic systems 被引量:1
2
作者 P.Venkata Mahesh S.Meyyappan RamaKoteswara Rao Alla 《Clean Energy》 EI 2022年第5期762-775,共14页
This work presents a machine-learning(ML)algorithm for maximum power point tracking(MPPT)of an isolated photovoltaic(PV)system.Due to the dynamic nature of weather conditions,the energy generation of PV systems is non... This work presents a machine-learning(ML)algorithm for maximum power point tracking(MPPT)of an isolated photovoltaic(PV)system.Due to the dynamic nature of weather conditions,the energy generation of PV systems is non-linear.Since there is no specific method for effectively dealing with the non-linear data,the use of ML methods to operate the PV system at its maximum power point(MPP)is desirable.A strategy based on the decision-tree(DT)regression ML algorithm is proposed in this work to determine the MPP of a PV system.The data were gleaned from the technical specifications of the PV module and were used to train and test the DT.These algorithms predict the maximum power available and the associated voltage of the module for a defined amount of irradiance and temperature.The boost converter duty cycle was determined using predicted values.The simulation was carried out for a 10-W solar panel with a short-circuit current of 0.62 A and an open-circuit voltage of 21.50 V at 1000 W/m^(2) irradiance and a temperature of 25℃.The simulation findings demonstrate that the proposed method compelled the PV panel to work at the MPP predicted by DTs compared to the existing topologies such asβ-MPPT,cuckoo search and artificial neural network results.From the proposed algorithm,efficiency has been improved by>93.93%in the steady state despite erratic irradiance and temperatures. 展开更多
关键词 boost converter decision tree maximum power point tracking photovoltaic system regression machine learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部