In this article, linear regular index 2 DAEs A(t)[D(t)x(t)]' + B(t)x(t) = q(t) are considered. Using a decoupling technique, initial condition and boundary condition are properly formulated. Regular inde...In this article, linear regular index 2 DAEs A(t)[D(t)x(t)]' + B(t)x(t) = q(t) are considered. Using a decoupling technique, initial condition and boundary condition are properly formulated. Regular index 1 DAEs are obtained by a regularization method. We study the behavior of the solution of the regularization system via asymptotic expansions. The error analysis between the solutions of the DAEs and its regularization system is given.展开更多
After having laid down the Axiom of Algebra, bringing the creation of the square root of -1 by Euler to the entire circle and thus authorizing a simple notation of the nth roots of unity, the author uses it to organiz...After having laid down the Axiom of Algebra, bringing the creation of the square root of -1 by Euler to the entire circle and thus authorizing a simple notation of the nth roots of unity, the author uses it to organize homogeneous divisions of the limited development of the exponential function, that is opening the way to the use of a whole bunch of new primary functions in Differential Calculus. He then shows how new supercomplex products in dimension 3 make it possible to calculate fractals whose connexity depends on the product considered. We recall the geometry of convex polygons and regular polygons.展开更多
Let Ω be a finite dimensional central algebra and chart Ω≠2 .The matrix equation AXB-CXD=E over Ω is considered.Necessary and sufficient conditions for the existence of centro(skew)symmetric solutions of the matri...Let Ω be a finite dimensional central algebra and chart Ω≠2 .The matrix equation AXB-CXD=E over Ω is considered.Necessary and sufficient conditions for the existence of centro(skew)symmetric solutions of the matrix equation are given.As a particular case ,the matrix equation X-AXB=C over Ω is also considered.展开更多
Let A=M-N be a regular splitting of an M-matrix. We study the spectral properties of the ineration matrix M-1N. Under a mild assumption on M-1 N. some necessary and sufficent conditions such that p(M-1N)=1 are obtaine...Let A=M-N be a regular splitting of an M-matrix. We study the spectral properties of the ineration matrix M-1N. Under a mild assumption on M-1 N. some necessary and sufficent conditions such that p(M-1N)=1 are obtained and the algebraic multiplicity and the index associated with eigenvalue 1 in M-1N are considered.展开更多
Let V1 and V2 be two -Banach algebras and Ri be the right operator Banach algebra and Li be the left operator Banach algebra of Vi(i=1,2). We give a characterization of the Jacobson radical for the projective tensor p...Let V1 and V2 be two -Banach algebras and Ri be the right operator Banach algebra and Li be the left operator Banach algebra of Vi(i=1,2). We give a characterization of the Jacobson radical for the projective tensor product V1rV2 in terms of the Jacobson radical for R1rL2. If V1 and V2 are isomorphic, then we show that this characterization can also be given in terms of the Jacobson radical for R2rL1.展开更多
In this paper,we introduce and investigate the strongly regular relation.Then we give the relational representations and an intrinsic characterization of strongly algebraic lattices via mapping relation and strongly r...In this paper,we introduce and investigate the strongly regular relation.Then we give the relational representations and an intrinsic characterization of strongly algebraic lattices via mapping relation and strongly regular relation.展开更多
Let G be a primitive strongly regular graph of order n and A is adjacency matrix. In this paper we first associate to A a real 3-dimensional Euclidean Jordan algebra? with rank three spanned by In and the natural powe...Let G be a primitive strongly regular graph of order n and A is adjacency matrix. In this paper we first associate to A a real 3-dimensional Euclidean Jordan algebra? with rank three spanned by In and the natural powers of A that is a subalgebra of the Euclidean Jordan algebra of symmetric matrix of order n. Next we consider a basis? that is a Jordan frame of . Finally, by an algebraic asymptotic analysis of the second spectral decomposition of some Hadamard series associated to A we establish some inequalities over the spectra and over the parameters of a strongly regular graph.展开更多
Constant solutions to Yang-Baxter equation are investigated over Grassmann algebra for the case of 6-vertex R-matrix. The general classification of all possible solutions over Grassmann algebra and particular cases wi...Constant solutions to Yang-Baxter equation are investigated over Grassmann algebra for the case of 6-vertex R-matrix. The general classification of all possible solutions over Grassmann algebra and particular cases with 2,3,4 generators are studied. As distinct from the standard case, when R-matrix over number field can have a maximum 5 nonvanishing elements, we obtain over Grassmann algebra a set of new full 6-vertex solutions. The solutions leading to regular R-matrices which appear in weak Hopf algebras are considered.展开更多
ring R is called right principally-injective if every R-homomorphism f:aR→R,a∈R,extends to R,or equivalently,if every system of equations xa=b(a,b∈R)is solvable in R.In this paper we show that for any arbitrary gra...ring R is called right principally-injective if every R-homomorphism f:aR→R,a∈R,extends to R,or equivalently,if every system of equations xa=b(a,b∈R)is solvable in R.In this paper we show that for any arbitrary graph E and for a field K,principally-injective conditions for the Leavitt path algebra LK(E)are equivalent to that graph E being acyclic.We also show that the principally-injective Leavitt path algebras are precisely the von Neumann regular Leavitt path algebras.展开更多
We consider the real three-dimensional Euclidean Jordan algebra associated to a strongly regular graph. Then, the Krein parameters of a strongly regular graph are generalized and some generalized Krein admissibility c...We consider the real three-dimensional Euclidean Jordan algebra associated to a strongly regular graph. Then, the Krein parameters of a strongly regular graph are generalized and some generalized Krein admissibility conditions are deduced. Furthermore, we establish some relations between the classical Krein parameters and the generalized Krein parameters.展开更多
In this paper,the generalized Kannan-type contraction in cone metric spaces over Banach algebras is introduced.The fixed point theorems satisfying generalized contractive conditions are obtained,without appealing to c...In this paper,the generalized Kannan-type contraction in cone metric spaces over Banach algebras is introduced.The fixed point theorems satisfying generalized contractive conditions are obtained,without appealing to completeness of X or normality of the cone.The continuity of the mapping is relaxed.Furthermore,we prove that the completeness in cone metric spaces over Banach algebras is necessary if the generalized Kannan-type contraction has a fixed point in X.These results greatly generalize several well-known comparable results in the literature.展开更多
基金Project supported by the Foundation for the Authors of the National Excellent Doctoral Thesis Award of China (200720)
文摘In this article, linear regular index 2 DAEs A(t)[D(t)x(t)]' + B(t)x(t) = q(t) are considered. Using a decoupling technique, initial condition and boundary condition are properly formulated. Regular index 1 DAEs are obtained by a regularization method. We study the behavior of the solution of the regularization system via asymptotic expansions. The error analysis between the solutions of the DAEs and its regularization system is given.
文摘After having laid down the Axiom of Algebra, bringing the creation of the square root of -1 by Euler to the entire circle and thus authorizing a simple notation of the nth roots of unity, the author uses it to organize homogeneous divisions of the limited development of the exponential function, that is opening the way to the use of a whole bunch of new primary functions in Differential Calculus. He then shows how new supercomplex products in dimension 3 make it possible to calculate fractals whose connexity depends on the product considered. We recall the geometry of convex polygons and regular polygons.
基金Supported by the Natural Science Foundation of China(10071078)Supported by the Natural Science Foundation of Shandong Province(Q99A08)
文摘Let Ω be a finite dimensional central algebra and chart Ω≠2 .The matrix equation AXB-CXD=E over Ω is considered.Necessary and sufficient conditions for the existence of centro(skew)symmetric solutions of the matrix equation are given.As a particular case ,the matrix equation X-AXB=C over Ω is also considered.
基金Supported by National Natural Science Foundation of China
文摘Let A=M-N be a regular splitting of an M-matrix. We study the spectral properties of the ineration matrix M-1N. Under a mild assumption on M-1 N. some necessary and sufficent conditions such that p(M-1N)=1 are obtained and the algebraic multiplicity and the index associated with eigenvalue 1 in M-1N are considered.
文摘Let V1 and V2 be two -Banach algebras and Ri be the right operator Banach algebra and Li be the left operator Banach algebra of Vi(i=1,2). We give a characterization of the Jacobson radical for the projective tensor product V1rV2 in terms of the Jacobson radical for R1rL2. If V1 and V2 are isomorphic, then we show that this characterization can also be given in terms of the Jacobson radical for R2rL1.
基金Supported by the National Natural Science Foundation of China(10861007)
文摘In this paper,we introduce and investigate the strongly regular relation.Then we give the relational representations and an intrinsic characterization of strongly algebraic lattices via mapping relation and strongly regular relation.
文摘Let G be a primitive strongly regular graph of order n and A is adjacency matrix. In this paper we first associate to A a real 3-dimensional Euclidean Jordan algebra? with rank three spanned by In and the natural powers of A that is a subalgebra of the Euclidean Jordan algebra of symmetric matrix of order n. Next we consider a basis? that is a Jordan frame of . Finally, by an algebraic asymptotic analysis of the second spectral decomposition of some Hadamard series associated to A we establish some inequalities over the spectra and over the parameters of a strongly regular graph.
文摘Constant solutions to Yang-Baxter equation are investigated over Grassmann algebra for the case of 6-vertex R-matrix. The general classification of all possible solutions over Grassmann algebra and particular cases with 2,3,4 generators are studied. As distinct from the standard case, when R-matrix over number field can have a maximum 5 nonvanishing elements, we obtain over Grassmann algebra a set of new full 6-vertex solutions. The solutions leading to regular R-matrices which appear in weak Hopf algebras are considered.
文摘ring R is called right principally-injective if every R-homomorphism f:aR→R,a∈R,extends to R,or equivalently,if every system of equations xa=b(a,b∈R)is solvable in R.In this paper we show that for any arbitrary graph E and for a field K,principally-injective conditions for the Leavitt path algebra LK(E)are equivalent to that graph E being acyclic.We also show that the principally-injective Leavitt path algebras are precisely the von Neumann regular Leavitt path algebras.
基金supported by the European Regional Development Fund through the program COMPETEby the Portuguese Government through the FCT—Fundacao para a Ciencia e a Tecnologia under the project PEst—C/MAT/UI0144/2013+1 种基金partially supported by Portuguese Funds trough CIDMA—Center for Research and development in Mathematics and Applications,Department of Mathematics,University of Aveiro,3810-193,Aveiro,Portugalthe Portuguese Foundation for Science and Technology(FCT-Fundacao para a Ciencia e Tecnologia),within Project PEst-OE/MAT/UI4106/2014
文摘We consider the real three-dimensional Euclidean Jordan algebra associated to a strongly regular graph. Then, the Krein parameters of a strongly regular graph are generalized and some generalized Krein admissibility conditions are deduced. Furthermore, we establish some relations between the classical Krein parameters and the generalized Krein parameters.
基金Supported by the Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities'Association(202101BA070001-045)the Science and Technology Development Fund,Macao SAR(0019/2021/A1).
文摘In this paper,the generalized Kannan-type contraction in cone metric spaces over Banach algebras is introduced.The fixed point theorems satisfying generalized contractive conditions are obtained,without appealing to completeness of X or normality of the cone.The continuity of the mapping is relaxed.Furthermore,we prove that the completeness in cone metric spaces over Banach algebras is necessary if the generalized Kannan-type contraction has a fixed point in X.These results greatly generalize several well-known comparable results in the literature.