The mixed covolume method for the regularized long wave equation is devel- oped and studied. By introducing a transfer operator γh, which maps the trial function space into the test function space, and combining the ...The mixed covolume method for the regularized long wave equation is devel- oped and studied. By introducing a transfer operator γh, which maps the trial function space into the test function space, and combining the mixed finite element with the finite volume method, the nonlinear and linear Euler fully discrete mixed covolume schemes are constructed, and the existence and uniqueness of the solutions are proved. The optimal error estimates for these schemes are obtained. Finally, a numerical example is provided to examine the efficiency of the proposed schemes.展开更多
The global fast dynamics for the generalized symmetric regularized long wave equation with damping term is considered. The squeezing property of the nonlinear semi_group associated with this equation and the existence...The global fast dynamics for the generalized symmetric regularized long wave equation with damping term is considered. The squeezing property of the nonlinear semi_group associated with this equation and the existence of exponential attractor are proved. The upper bounds of its fractal dimension are also estimated.展开更多
This paper presents a meshless method for the nonlinear generalized regularized long wave (GRLW) equation based on the moving least-squares approximation. The nonlinear discrete scheme of the GRLW equation is obtain...This paper presents a meshless method for the nonlinear generalized regularized long wave (GRLW) equation based on the moving least-squares approximation. The nonlinear discrete scheme of the GRLW equation is obtained and is solved using the iteration method. A theorem on the convergence of the iterative process is presented and proved using theorems of the infinity norm. Compared with numerical methods based on mesh, the meshless method for the GRLW equation only requires the.scattered nodes instead of meshing the domain of the problem. Some examples, such as the propagation of single soliton and the interaction of two solitary waves, are given to show the effectiveness of the meshless method.展开更多
Abstract In the present paper, we construct two approximate inertial manifolds for the generalized symmetric regularized long wave equations with damping term. The orders of approximations of these manifolds to the gl...Abstract In the present paper, we construct two approximate inertial manifolds for the generalized symmetric regularized long wave equations with damping term. The orders of approximations of these manifolds to the global attractor are derived.展开更多
This paper deals with the asymptotic behaviour of solutions for thegeneralized symmetric regularized long wave equations with dissipation term. We first show theexistence of global weak attractors for the periodic ini...This paper deals with the asymptotic behaviour of solutions for thegeneralized symmetric regularized long wave equations with dissipation term. We first show theexistence of global weak attractors for the periodic initial value problem of this equations in H^2x H^1. And then by an energy equation and an idea of Ghidaglia and Guo, we conclude that the globalweak attractor is actually the global strong attractor for S(t) in H^2 (Ω) x H^1 (Ω). The finitedimensionality of the global attractor is also established.展开更多
The element-free Galerkin (EFG) method is used in this paper to find the numerical solution to a regularized long-wave (RLW) equation. The Galerkin weak form is adopted to obtain the discrete equations, and the es...The element-free Galerkin (EFG) method is used in this paper to find the numerical solution to a regularized long-wave (RLW) equation. The Galerkin weak form is adopted to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. The effectiveness of the EFG method of solving the RLW equation is investigated by two numerical examples in this paper.展开更多
In this paper, we investigate the space-time fractional symmetric regularized long wave equation. By using the Backlund transformations and nonlinear superposition formulas of solutions to Riccati equation, we present...In this paper, we investigate the space-time fractional symmetric regularized long wave equation. By using the Backlund transformations and nonlinear superposition formulas of solutions to Riccati equation, we present infinite sequence solutions for space-time fractional symmetric regularized long wave equation. This method can be extended to solve other nonlinear fractional partial differential equations.展开更多
The extraction of traveling wave solutions for nonlinear evolution equations is a challenge in various mathematics,physics,and engineering disciplines.This article intends to analyze several traveling wave solutions f...The extraction of traveling wave solutions for nonlinear evolution equations is a challenge in various mathematics,physics,and engineering disciplines.This article intends to analyze several traveling wave solutions for themodified regularized long-wave(MRLW)equation using several approaches,namely,the generalized algebraic method,the Jacobian elliptic functions technique,and the improved Q-expansion strategy.We successfully obtain analytical solutions consisting of rational,trigonometric,and hyperbolic structures.The adaptive moving mesh technique is applied to approximate the numerical solution of the proposed equation.The adaptive moving mesh method evenly distributes the points on the high error areas.This method perfectly and strongly reduces the error.We compare the constructed exact and numerical results to ensure the reliability and validity of the methods used.To better understand the considered equation’s physical meaning,we present some 2D and 3D figures.The exact and numerical approaches are efficient,powerful,and versatile for establishing novel bright,dark,bell-kink-type,and periodic traveling wave solutions for nonlinear PDEs.展开更多
This work obtains the disguise version of exact solitary wave solutions of the generalized(2+1)-dimensk>nal Zakharov-Kuznetsov-Benjamin-Bona-Mahony and the regularized long wave equation with some free parame...This work obtains the disguise version of exact solitary wave solutions of the generalized(2+1)-dimensk>nal Zakharov-Kuznetsov-Benjamin-Bona-Mahony and the regularized long wave equation with some free parameters via modified simple equation method(MSE).Usually the method does not give any solution if the balance number is more than one,but we apply MSE method successfully in different way to carry out the solutions of nonlinear evolution equation with balance number two.Finally some graphical results of the velocity profiles are presented for different values of the material constants.It is shown that this method,without help of any symbolic computation,provide a straightforward and powerful mathematical tool for solving nonlinear evolution equation.展开更多
In this study,we implement the generalized(G/G)-expansion method established by Wang et al.to examine wave solutions to some nonlinear evolution equations.The method,known as the double(G/G,1/G)-expansion method is ...In this study,we implement the generalized(G/G)-expansion method established by Wang et al.to examine wave solutions to some nonlinear evolution equations.The method,known as the double(G/G,1/G)-expansion method is used to establish abundant new and further general exact wave solutions to the(3+1)-dimensional Jimbo-Miwa equation,the(3+1)-dimensional Kadomtsev-Petviashvili equation and symmetric regularized long wave equation.The solutions are extracted in terms of hyperbolic function,trigonometric function and rational function.The solitary wave solutions are constructed from the obtained traveling wave solutions if the parameters received some definite values.Graphs of the solutions are also depicted to describe the phenomena apparently and the shapes of the obtained solutions are singular periodic,anti-kink,singular soliton,singular anti-bell shape,compaction etc.This method is straightforward,compact and reliable and gives huge new closed form traveling wave solutions of nonlinear evolution equations in ocean engineering.展开更多
In this study,the authors obtained the soliton and periodic wave solutions for time fractional symmetric regularized long wave equation(SRLW)and Ostrovsky equation(OE)both arising as a model in ocean engineering.For t...In this study,the authors obtained the soliton and periodic wave solutions for time fractional symmetric regularized long wave equation(SRLW)and Ostrovsky equation(OE)both arising as a model in ocean engineering.For this aim modified extended tanh-function(mETF)is used.While using this method,chain rule is employed to turn fractional nonlinear partial differential equation into the nonlinear ordinary differential equation in integer order.Owing to the chain rule,there is no further requirement for any normalization or discretization.Beta derivative which involves fractional term is used in considered mathematical models.Obtaining the exact solutions of these equations is very important for knowing the wave behavior in ocean engineering models.展开更多
基金supported by the National Natural Science Fundation of China (No. 11061021)the Science Research of Inner Mongolia Advanced Education (Nos. NJ10006, NJ10016, and NJZZ12011)the National Science Foundation of Inner Mongolia (Nos. 2011BS0102 and 2012MS0106)
文摘The mixed covolume method for the regularized long wave equation is devel- oped and studied. By introducing a transfer operator γh, which maps the trial function space into the test function space, and combining the mixed finite element with the finite volume method, the nonlinear and linear Euler fully discrete mixed covolume schemes are constructed, and the existence and uniqueness of the solutions are proved. The optimal error estimates for these schemes are obtained. Finally, a numerical example is provided to examine the efficiency of the proposed schemes.
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (No .1 0 2 71 0 3 4)
文摘The global fast dynamics for the generalized symmetric regularized long wave equation with damping term is considered. The squeezing property of the nonlinear semi_group associated with this equation and the existence of exponential attractor are proved. The upper bounds of its fractal dimension are also estimated.
基金supported by the National Natural Science Foundation of China (Grant No. 10871124)the Innovation Program of the Shanghai Municipal Education Commission,China (Grant No. 09ZZ99)
文摘This paper presents a meshless method for the nonlinear generalized regularized long wave (GRLW) equation based on the moving least-squares approximation. The nonlinear discrete scheme of the GRLW equation is obtained and is solved using the iteration method. A theorem on the convergence of the iterative process is presented and proved using theorems of the infinity norm. Compared with numerical methods based on mesh, the meshless method for the GRLW equation only requires the.scattered nodes instead of meshing the domain of the problem. Some examples, such as the propagation of single soliton and the interaction of two solitary waves, are given to show the effectiveness of the meshless method.
文摘Abstract In the present paper, we construct two approximate inertial manifolds for the generalized symmetric regularized long wave equations with damping term. The orders of approximations of these manifolds to the global attractor are derived.
基金This research is supported by the National Natural Science Foundation of China(Grant 10271034).
文摘This paper deals with the asymptotic behaviour of solutions for thegeneralized symmetric regularized long wave equations with dissipation term. We first show theexistence of global weak attractors for the periodic initial value problem of this equations in H^2x H^1. And then by an energy equation and an idea of Ghidaglia and Guo, we conclude that the globalweak attractor is actually the global strong attractor for S(t) in H^2 (Ω) x H^1 (Ω). The finitedimensionality of the global attractor is also established.
基金supported by the Natural Science Foundation of Zhejiang Province of China (Grant No. Y6110007)
文摘The element-free Galerkin (EFG) method is used in this paper to find the numerical solution to a regularized long-wave (RLW) equation. The Galerkin weak form is adopted to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. The effectiveness of the EFG method of solving the RLW equation is investigated by two numerical examples in this paper.
基金Acknowledgments This work is supported by the National Natural Science Foundation of China (Grant No. 11462019) and the Scientific Research Foundation of Inner Mongolia University for Nationalities (Grant No. NMD1306). The author would like to thank the referees for their time and comments.
文摘In this paper, we investigate the space-time fractional symmetric regularized long wave equation. By using the Backlund transformations and nonlinear superposition formulas of solutions to Riccati equation, we present infinite sequence solutions for space-time fractional symmetric regularized long wave equation. This method can be extended to solve other nonlinear fractional partial differential equations.
文摘The extraction of traveling wave solutions for nonlinear evolution equations is a challenge in various mathematics,physics,and engineering disciplines.This article intends to analyze several traveling wave solutions for themodified regularized long-wave(MRLW)equation using several approaches,namely,the generalized algebraic method,the Jacobian elliptic functions technique,and the improved Q-expansion strategy.We successfully obtain analytical solutions consisting of rational,trigonometric,and hyperbolic structures.The adaptive moving mesh technique is applied to approximate the numerical solution of the proposed equation.The adaptive moving mesh method evenly distributes the points on the high error areas.This method perfectly and strongly reduces the error.We compare the constructed exact and numerical results to ensure the reliability and validity of the methods used.To better understand the considered equation’s physical meaning,we present some 2D and 3D figures.The exact and numerical approaches are efficient,powerful,and versatile for establishing novel bright,dark,bell-kink-type,and periodic traveling wave solutions for nonlinear PDEs.
文摘This work obtains the disguise version of exact solitary wave solutions of the generalized(2+1)-dimensk>nal Zakharov-Kuznetsov-Benjamin-Bona-Mahony and the regularized long wave equation with some free parameters via modified simple equation method(MSE).Usually the method does not give any solution if the balance number is more than one,but we apply MSE method successfully in different way to carry out the solutions of nonlinear evolution equation with balance number two.Finally some graphical results of the velocity profiles are presented for different values of the material constants.It is shown that this method,without help of any symbolic computation,provide a straightforward and powerful mathematical tool for solving nonlinear evolution equation.
文摘In this study,we implement the generalized(G/G)-expansion method established by Wang et al.to examine wave solutions to some nonlinear evolution equations.The method,known as the double(G/G,1/G)-expansion method is used to establish abundant new and further general exact wave solutions to the(3+1)-dimensional Jimbo-Miwa equation,the(3+1)-dimensional Kadomtsev-Petviashvili equation and symmetric regularized long wave equation.The solutions are extracted in terms of hyperbolic function,trigonometric function and rational function.The solitary wave solutions are constructed from the obtained traveling wave solutions if the parameters received some definite values.Graphs of the solutions are also depicted to describe the phenomena apparently and the shapes of the obtained solutions are singular periodic,anti-kink,singular soliton,singular anti-bell shape,compaction etc.This method is straightforward,compact and reliable and gives huge new closed form traveling wave solutions of nonlinear evolution equations in ocean engineering.
文摘In this study,the authors obtained the soliton and periodic wave solutions for time fractional symmetric regularized long wave equation(SRLW)and Ostrovsky equation(OE)both arising as a model in ocean engineering.For this aim modified extended tanh-function(mETF)is used.While using this method,chain rule is employed to turn fractional nonlinear partial differential equation into the nonlinear ordinary differential equation in integer order.Owing to the chain rule,there is no further requirement for any normalization or discretization.Beta derivative which involves fractional term is used in considered mathematical models.Obtaining the exact solutions of these equations is very important for knowing the wave behavior in ocean engineering models.