期刊文献+
共找到455篇文章
< 1 2 23 >
每页显示 20 50 100
Anisotropic fourth-order diffusion regularization for multiframe super-resolution reconstruction
1
作者 黄淑英 杨勇 王国宇 《Journal of Central South University》 SCIE EI CAS 2013年第11期3180-3186,共7页
A novel rcgularization-based approach is presented for super-resolution reconstruction in order to achieve good tradeoff between noise removal and edge preservation. The method is developed by using L1 norm as data fi... A novel rcgularization-based approach is presented for super-resolution reconstruction in order to achieve good tradeoff between noise removal and edge preservation. The method is developed by using L1 norm as data fidelity term and anisotropic fourth-order diffusion model as a regularization item to constrain the smoothness of the reconstructed images. To evaluate and prove the performance of the proposed method, series of experiments and comparisons with some existing methods including bi-cubic interpolation method and bilateral total variation method are carried out. Numerical results on synthetic data show that the PSNR improvement of the proposed method is approximately 1.0906 dB on average compared to bilateral total variation method, and the results on real videos indicate that the proposed algorithm is also effective in terms of removing visual artifacts and preserving edges in restored images. 展开更多
关键词 super-resolution anisotropic fourth-order diffusion bilateral total variation regularIZATION
下载PDF
Super-resolution reconstruction for license plate images of moving vehicles
2
作者 路小波 曾维理 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期457-460,共4页
A novel reconstruction method to improve the recognition of license plate texts of moving vehicles in real traffic videos is proposed, which fuses complimentary information among low resolution (LR) images to yield ... A novel reconstruction method to improve the recognition of license plate texts of moving vehicles in real traffic videos is proposed, which fuses complimentary information among low resolution (LR) images to yield a high resolution (HR) image. Based on the regularization super-resolution (SR) reconstruction schemes, this paper first introduces a residual gradient (RG) term as a new regularization term to improve the quality of the reconstructed image. Moreover, L1 norm is used to measure the residual data (RD) term and the RG term in order to improve the robustness of the proposed method. Finally, the steepest descent method is exploited to solve the energy functional. Simulated and real acquired video sequence experiments show the effectiveness and practicability of the proposed method and demonstrate its superiority over the bi-cubic interpolation and discontinuity adaptive Markov random field (DAMRF) SR method in both signal to noise ratios (SNR) and visual effects. 展开更多
关键词 super-resolution residual gradient term residual data term license plate regularIZATION
下载PDF
A Hybrid Regularization-Based Multi-Frame Super-Resolution Using Bayesian Framework 被引量:1
3
作者 Mahmoud M.Khattab Akram M.Zeki +3 位作者 Ali A.Alwan Belgacem Bouallegue Safaa S.Matter Abdelmoty M.Ahmed 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期35-54,共20页
The prime purpose for the image reconstruction of a multi-frame super-resolution is to reconstruct a higher-resolution image through incorporating the knowledge obtained from a series of relevant low-resolution images... The prime purpose for the image reconstruction of a multi-frame super-resolution is to reconstruct a higher-resolution image through incorporating the knowledge obtained from a series of relevant low-resolution images,which is useful in numerousfields.Nevertheless,super-resolution image reconstruction methods are usually damaged by undesirable restorative artifacts,which include blurring distortion,noises,and stair-casing effects.Consequently,it is always challenging to achieve balancing between image smoothness and preservation of the edges inside the image.In this research work,we seek to increase the effectiveness of multi-frame super-resolution image reconstruction by increasing the visual information and improving the automated machine perception,which improves human analysis and interpretation processes.Accordingly,we propose a new approach to the image reconstruction of multi-frame super-resolution,so that it is created through the use of the regularization framework.In the proposed approach,the bilateral edge preserving and bilateral total variation regularizations are employed to approximate a high-resolution image generated from a sequence of corresponding images with low-resolution to protect significant features of an image,including sharp image edges and texture details while preventing artifacts.The experimental results of the synthesized image demonstrate that the new proposed approach has improved efficacy both visually and numerically more than other approaches. 展开更多
关键词 super-resolution regularized framework bilateral total variation bilateral edge preserving
下载PDF
Single frame super-resolution reconstruction based on sparse representation
4
作者 谢超 路小波 曾维理 《Journal of Southeast University(English Edition)》 EI CAS 2016年第2期177-182,共6页
In order to effectively improve the quality of recovered images, a single frame super-resolution reconstruction method based on sparse representation is proposed. The combination method of local orientation estimation... In order to effectively improve the quality of recovered images, a single frame super-resolution reconstruction method based on sparse representation is proposed. The combination method of local orientation estimation-based image patch clustering and principal component analysis is used to obtain a series of geometric dictionaries of different orientations in the dictionary learning process. Subsequently, the dictionary of the nearest orientation is adaptively assigned to each of the input patches that need to be represented in the sparse coding process. Moreover, the consistency of gradients is further incorporated into the basic framework to make more substantial progress in preserving more fine edges and producing sharper results. Two groups of experiments on different types of natural images indicate that the proposed method outperforms some state-of- the-art counterparts in terms of both numerical indicators and visual quality. 展开更多
关键词 single frame super-resolution reconstruction sparse representation local orientation estimation principalcomponent analysis (PCA) consistency of gradients
下载PDF
Super-resolution reconstruction of synthetic-aperture radar image using adaptive-threshold singular value decomposition technique 被引量:2
5
作者 朱正为 周建江 《Journal of Central South University》 SCIE EI CAS 2011年第3期809-815,共7页
A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. F... A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results. 展开更多
关键词 synthetic-aperture radar image reconstruction super-resolution singular value decomposition adaptive-threshold
下载PDF
Image super-resolution reconstruction based on sparse representation and residual compensation 被引量:1
6
作者 史郡 王晓华 《Journal of Beijing Institute of Technology》 EI CAS 2013年第3期394-399,共6页
A super-resolution reconstruction algorithm is proposed. The algorithm is based on the idea of the sparse representation of signals, by using the fact that the sparsest representation of a sig- nal is unique as the co... A super-resolution reconstruction algorithm is proposed. The algorithm is based on the idea of the sparse representation of signals, by using the fact that the sparsest representation of a sig- nal is unique as the constraint of the patched-based reconstruction, and compensating residual errors of the reconstruction results both locally and globally to solve the distortion problem in patch-based reconstruction algorithms. Three reconstruction algorithms are compared. The results show that the images reconstructed with the new algorithm have the best quality. 展开更多
关键词 super-resolution reconstruction sparse representation image patch residual compen-sation
下载PDF
Super-resolution image reconstruction based on three-step-training neural networks
7
作者 Fuzhen Zhu Jinzong Li Bing Zhu Dongdong Ma 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期934-940,共7页
A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite ima... A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite image. The method is based on BPNN. First, three groups learning samples with different resolutions are obtained according to image observation model, and then vector mappings are respectively used to those three group learning samples to speed up the convergence of BPNN, at last, three times consecutive training are carried on the BPNN. Training samples used in each step are of higher resolution than those used in the previous steps, so the increasing weights store a great amount of information for SRR, and network performance and generalization ability are improved greatly. Simulation and generalization tests are carried on the well-trained three-step-training NN respectively, and the reconstruction results with higher resolution images verify the effectiveness and validity of this method. 展开更多
关键词 image reconstruction super-resolution three-steptraining neural network BP algorithm vector mapping.
下载PDF
Multi-channel fast super-resolution image reconstruction based on matrix observation model
8
作者 刘洪臣 冯勇 李林静 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第2期239-246,共8页
A multi-channel fast super-resolution image reconstruction algorithm based on matrix observation model is proposed in the paper,which consists of three steps to avoid the computational complexity: a single image SR re... A multi-channel fast super-resolution image reconstruction algorithm based on matrix observation model is proposed in the paper,which consists of three steps to avoid the computational complexity: a single image SR reconstruction step,a registration step and a wavelet-based image fusion. This algorithm decomposes two large matrixes to the tensor product of two little matrixes and uses the natural isomorphism between matrix space and vector space to transform cost function based on matrix-vector products model to matrix form. Furthermore,we prove that the regularization part can be transformed to the matrix formed. The conjugate-gradient method is used to solve this new model. Finally,the wavelet fusion is used to integrate all the registered highresolution images obtained from the single image SR reconstruction step. The proposed algorithm reduces the storage requirement and the calculating complexity,and can be applied to large-dimension low-resolution images. 展开更多
关键词 super-resolution image reconstruction tensor product wavelet fusion
下载PDF
A NOVEL METHOD TO REALIZE COMPRESSED VIDEO SUPER-RESOLUTION RECONSTRUCTION
9
作者 Zhou Liang Liu Feng Zhu Xiuchang 《Journal of Electronics(China)》 2006年第2期310-313,共4页
This letter proposes a novel method of compressed video super-resolution reconstruction based on MAP-POCS (Maximum Posterior Probability-Projection Onto Convex Set). At first assuming the high-resolution model subject... This letter proposes a novel method of compressed video super-resolution reconstruction based on MAP-POCS (Maximum Posterior Probability-Projection Onto Convex Set). At first assuming the high-resolution model subject to Poisson-Markov distribution, then constructing the projecting convex based on MAP. According to the characteristics of compressed video, two different convexes are constructed based on integrating the inter-frame and intra-frame information in the wavelet-domain. The results of the experiment demonstrate that the new method not only outperforms the traditional algorithms on the aspects of PSNR (Peak Signal-to-Noise Ratio), MSE (Mean Square Error) and reconstruction vision effect, but also has the advantages of rapid convergence and easy extension. 展开更多
关键词 super-resolution Compressed video Image reconstruction MAP-POCS
下载PDF
Super-resolution reconstruction based on CNN:A case study of Jilin-1 multispectral data
10
作者 JIN Daoming WU Qiong 《Global Geology》 2021年第3期183-188,共6页
MS or MS+PAN is usually applied separately in convolutional neural network(CNN)resolution reconstruction to obtain high-resolution MS images,but the difference between the two datasets is rarely studied.This paper int... MS or MS+PAN is usually applied separately in convolutional neural network(CNN)resolution reconstruction to obtain high-resolution MS images,but the difference between the two datasets is rarely studied.This paper introduced a dual-channel network and took MS and MS+PAN of Jilin-1 spectrum satellites as two datasets to evaluate the performance of CNN resolution reconstruction,and analyzed the difference with bicubic and GS methods.The result of CNN reconstruction shows that MS+PAN dataset performed better than MS,with about 6%improvement in spatial and spectral components,and the overall quality of MS+PAN dataset was slightly higher than that of MS dataset,with QNR from 0.9559 to 0.9584.The bicubic performed best in spectral components with the quality value of 0.017,and GS performed best in spatial components with the quality values of 0.0443.CNN showed similar performance in spectral and spatial components with the two traditional methods and achieved the best overall quality with QNR value of 0.9584. 展开更多
关键词 Jilin-1 spectrum satellites CNN super-resolution reconstruction
下载PDF
Variational regularization method of solving the Cauchy problem for Laplace's equation: Innovation of the Grad–Shafranov(GS) reconstruction 被引量:4
11
作者 颜冰 黄思训 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第10期650-655,共6页
The simplified linear model of Grad-Shafranov (GS) reconstruction can be reformulated into an inverse boundary value problem of Laplace's equation. Therefore, in this paper we focus on the method of solving the inv... The simplified linear model of Grad-Shafranov (GS) reconstruction can be reformulated into an inverse boundary value problem of Laplace's equation. Therefore, in this paper we focus on the method of solving the inverse boundary value problem of Laplace's equation. In the first place, the variational regularization method is used to deal with the ill- posedness of the Cauchy problem for Laplace's equation. Then, the 'L-Curve' principle is suggested to be adopted in choosing the optimal regularization parameter. Finally, a numerical experiment is implemented with a section of Neumann and Dirichlet boundary conditions with observation errors. The results well converge to the exact solution of the problem, which proves the efficiency and robustness of the proposed method. When the order of observation error δ is 10-1, the order of the approximate result error can reach 10-3. 展开更多
关键词 Grad-Shafranov reconstruction variational regularization method Cauchy problem
下载PDF
Transformer and GAN-Based Super-Resolution Reconstruction Network for Medical Images 被引量:1
12
作者 Weizhi Du Shihao Tian 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第1期197-206,共10页
Super-resolution reconstruction in medical imaging has become more demanding due to the necessity of obtaining high-quality images with minimal radiation dose,such as in low-field magnetic resonance imaging(MRI).Howev... Super-resolution reconstruction in medical imaging has become more demanding due to the necessity of obtaining high-quality images with minimal radiation dose,such as in low-field magnetic resonance imaging(MRI).However,image super-resolution reconstruction remains a difficult task because of the complexity and high textual requirements for diagnosis purpose.In this paper,we offer a deep learning based strategy for reconstructing medical images from low resolutions utilizing Transformer and generative adversarial networks(T-GANs).The integrated system can extract more precise texture information and focus more on important locations through global image matching after successfully inserting Transformer into the generative adversarial network for picture reconstruction.Furthermore,we weighted the combination of content loss,adversarial loss,and adversarial feature loss as the final multi-task loss function during the training of our proposed model T-GAN.In comparison to established measures like peak signal-to-noise ratio(PSNR)and structural similarity index measure(SSIM),our suggested T-GAN achieves optimal performance and recovers more texture features in super-resolution reconstruction of MRI scanned images of the knees and belly. 展开更多
关键词 super-resolution image reconstruction TRANSFORMER generative adversarial network(GAN)
原文传递
Deep-learning-based methods for super-resolution fluorescence microscopy
13
作者 Jianhui Liao Junle Qu +1 位作者 Yongqi Hao Jia Li 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2023年第3期85-100,共16页
The algorithm used for reconstruction or resolution enhancement is one of the factors affectingthe quality of super-resolution images obtained by fluorescence microscopy.Deep-learning-basedalgorithms have achieved sta... The algorithm used for reconstruction or resolution enhancement is one of the factors affectingthe quality of super-resolution images obtained by fluorescence microscopy.Deep-learning-basedalgorithms have achieved stateof-the-art performance in super-resolution fluorescence micros-copy and are becoming increasingly attractive.We firstly introduce commonly-used deep learningmodels,and then review the latest applications in terms of the net work architectures,the trainingdata and the loss functions.Additionally,we discuss the challenges and limits when using deeplearning to analyze the fluorescence microscopic data,and suggest ways to improve the reliability and robustness of deep learning applications. 展开更多
关键词 super-resolution fuorescence microscopy deep learning convolutional neural net-work generative adversarial network image reconstruction
下载PDF
Source reconstruction for bioluminescence tomography via L_(1/2)regularization 被引量:1
14
作者 Jingjing Yu Qiyue Li Haiyu Wang 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2018年第2期8-16,共9页
Bioluminescence tomography(BLT)is an important noninvasive optical molecular imaging modality in preclinical research.To improve the image quality,reconstruction algorithms have to deal with the inherent ill-posedness... Bioluminescence tomography(BLT)is an important noninvasive optical molecular imaging modality in preclinical research.To improve the image quality,reconstruction algorithms have to deal with the inherent ill-posedness of BLT inverse problem.The sparse characteristic of bioluminescent sources in spatial distribution has been widely explored in BLT and many L1-regularized methods have been investigated due to the sparsity-inducing properties of L1 norm.In this paper,we present a reconstruction method based on L_(1/2) regularization to enhance sparsity of BLT solution and solve the nonconvex L_(1/2) norm problem by converting it to a series of weighted L1 homotopy minimization problems with iteratively updated weights.To assess the performance of the proposed reconstruction algorithm,simulations on a heterogeneous mouse model are designed to compare it with three representative sparse reconstruction algorithms,including the weighted interior-point,L1 homotopy,and the Stagewise Orthogonal Matching Pursuit algorithm.Simulation results show that the proposed method yield stable reconstruction results under different noise levels.Quantitative comparison results demonstrate that the proposed algorithm outperforms the competitor algorithms in location accuracy,multiple-source resolving and image quality. 展开更多
关键词 Bioluminescence tomography L_(1/2)regularization inverse problem reconstruction algorithm
下载PDF
Electrical Impedance Tomography Image Reconstruction Using Iterative Lavrentiev and L-Curve-Based Regularization Algorithm
15
作者 Wenqin WANG Jingye CAI Lian YANG 《Journal of Electromagnetic Analysis and Applications》 2010年第1期45-50,共6页
Electrical impedance tomography (EIT) is a technique for determining the electrical conductivity and permittivity distribution inside a medium from measurements made on its surface. The impedance distribution reconstr... Electrical impedance tomography (EIT) is a technique for determining the electrical conductivity and permittivity distribution inside a medium from measurements made on its surface. The impedance distribution reconstruction in EIT is a nonlinear inverse problem that requires the use of a regularization method. The generalized Tikhonov regularization methods are often used in solving inverse problems. However, for EIT image reconstruction, the generalized Tikhonov regularization methods may lose the boundary information due to its smoothing operation. In this paper, we propose an iterative Lavrentiev regularization and L-curve-based algorithm to reconstruct EIT images. The regularization parameter should be carefully chosen, but it is often heuristically selected in the conventional regularization-based reconstruction algorithms. So, an L-curve-based optimization algorithm is used for selecting the Lavrentiev regularization parameter. Numerical analysis and simulation results are performed to illustrate EIT image reconstruction. It is shown that choosing the appropriate regularization parameter plays an important role in reconstructing EIT images. 展开更多
关键词 Electrical Impedance Tomography (EIT) reconstruction ALGORITHM ITERATIVE Lavrentiev regularIZATION Parameter Inverse Problem.
下载PDF
TranSR-Ne RF:Super-resolution neural radiance field for reconstruction and rendering of weak and repetitive texture of aviation damaged functional surface
16
作者 Qichun HU Haojun XU +4 位作者 Xiaolong WEI Yizhen YIN Weifeng HE Xinmin HAN Caizhi LI 《Chinese Journal of Aeronautics》 SCIE EI CAS 2024年第11期447-461,共15页
In order to reconstruct and render the weak and repetitive texture of the damaged functional surface of aviation,an improved neural radiance field,named TranSR-NeRF,is proposed.In this paper,a data acquisition system ... In order to reconstruct and render the weak and repetitive texture of the damaged functional surface of aviation,an improved neural radiance field,named TranSR-NeRF,is proposed.In this paper,a data acquisition system was designed and built.The acquired images generated initial point clouds through TransMVSNet.Meanwhile,after extracting features from the images through the improved SE-ConvNeXt network,the extracted features were aligned and fused with the initial point cloud to generate high-quality neural point cloud.After ray-tracing and sampling of the neural point cloud,the ResMLP neural network designed in this paper was used to regress the volume density and radiance under a given viewing angle,which introduced spatial coordinate and relative positional encoding.The reconstruction and rendering of arbitrary-scale super-resolution of damaged functional surface is realized.In this paper,the influence of illumination conditions and background environment on the model performance is also studied through experiments,and the comparison and ablation experiments for the improved methods proposed in this paper is conducted.The experimental results show that the improved model has good effect.Finally,the application experiment of object detection task is carried out,and the experimental results show that the model has good practicability. 展开更多
关键词 Functional surface Multi-view reconstruction Neural rendering TranSR-NeRF Image super-resolution Deep learning
原文传递
Reconstruction of impact force of mechanical press in time domain
17
作者 何鹏程 贾方 《Journal of Southeast University(English Edition)》 EI CAS 2011年第4期400-404,共5页
To overcome the difficulty in directly measuring the impact force of a mechanical press, the inverse theory is employed to reconstruct the impact force from the corresponding response data in time domain. The nature o... To overcome the difficulty in directly measuring the impact force of a mechanical press, the inverse theory is employed to reconstruct the impact force from the corresponding response data in time domain. The nature of ill-posedness of impact force reconstruction is explored through singular value decomposition (SVD) and the Tikhonov regularization is utilized to deal with the ill-posedness, in which the optimal parameter is chosen in light of the L-curve criterion and the generalized cross- validation (GCV). The experimentally measured strain responses of upper and lower dies of the press are chosen as source data for impact force reconstruction, and the corresponding numerical results are compared with the experimental measurements, which verifies the effectiveness of the reconstruction method. 展开更多
关键词 mechanical press impact force reconstruction inverse problem regularIZATION
下载PDF
AN IMPROVED SPARSITY ADAPTIVE MATCHING PURSUIT ALGORITHM FOR COMPRESSIVE SENSING BASED ON REGULARIZED BACKTRACKING 被引量:3
18
作者 Zhao Ruizhen Ren Xiaoxin +1 位作者 Han Xuelian Hu Shaohai 《Journal of Electronics(China)》 2012年第6期580-584,共5页
Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presen... Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presented an improved SAMP algorithm based on Regularized Backtracking (SAMP-RB). By adapting a regularized backtracking step to SAMP algorithm in each iteration stage, the proposed algorithm can flexibly remove the inappropriate atoms. The experimental results show that SAMP-RB reconstruction algorithm greatly improves SAMP algorithm both in reconstruction quality and computational time. It has better reconstruction efficiency than most of the available matching pursuit algorithms. 展开更多
关键词 Compressive sensing reconstruction algorithm Sparsity adaptive regularized back-tracking
下载PDF
Research on the Application of Super Resolution Reconstruction Algorithm for Underwater Image 被引量:3
19
作者 Tingting Yang Shuwen Jia Hao Ma 《Computers, Materials & Continua》 SCIE EI 2020年第3期1249-1258,共10页
Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water a... Underwater imaging is widely used in ocean,river and lake exploration,but it is affected by properties of water and the optics.In order to solve the lower-resolution underwater image formed by the influence of water and light,the image super-resolution reconstruction technique is applied to the underwater image processing.This paper addresses the problem of generating super-resolution underwater images by convolutional neural network framework technology.We research the degradation model of underwater images,and analyze the lower-resolution factors of underwater images in different situations,and compare different traditional super-resolution image reconstruction algorithms.We further show that the algorithm of super-resolution using deep convolution networks(SRCNN)which applied to super-resolution underwater images achieves good results. 展开更多
关键词 Underwater image image super-resolution algorithm algorithm reconstruction degradation model
下载PDF
Single color image super-resolution using sparse representation and color constraint 被引量:2
20
作者 XU Zhigang MA Qiang YUAN Feixiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第2期266-271,共6页
Color image super-resolution reconstruction based on the sparse representation model usually adopts the regularization norm(e.g.,L1 or L2).These methods have limited ability to keep image texture detail to some extent... Color image super-resolution reconstruction based on the sparse representation model usually adopts the regularization norm(e.g.,L1 or L2).These methods have limited ability to keep image texture detail to some extent and are easy to cause the problem of blurring details and color artifacts in color reconstructed images.This paper presents a color super-resolution reconstruction method combining the L2/3 sparse regularization model with color channel constraints.The method converts the low-resolution color image from RGB to YCbCr.The L2/3 sparse regularization model is designed to reconstruct the brightness channel of the input low-resolution color image.Then the color channel-constraint method is adopted to remove artifacts of the reconstructed highresolution image.The method not only ensures the reconstruction quality of the color image details,but also improves the removal ability of color artifacts.The experimental results on natural images validate that our method has improved both subjective and objective evaluation. 展开更多
关键词 COLOR image sparse representation super-resolution L2/3 regularIZATION NORM COLOR channel CONSTRAINT
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部