In this paper, the impact of the wind power generation system on the total cost and profit of the system is studied by using the proposed procedure of binary Sine Cosine (BSC) optimization algorithm with optimal prior...In this paper, the impact of the wind power generation system on the total cost and profit of the system is studied by using the proposed procedure of binary Sine Cosine (BSC) optimization algorithm with optimal priority list (OPL) algorithm. As well, investigate the advantages of system transformation from a regulated system to a deregulated system and the difference in the objective functions of the two systems. The suggested procedure is carried out in two parallel algorithms;The goal of the first algorithm is to reduce the space of searching by using OPL, while the second algorithm adjusts BSC to get the optimal economic dispatch with minimum operation cost of the unit commitment (UCP) problem in the regulated system. But, in the deregulated system, the second algorithm adopts the BSC technique to find the optimal solution to the profit-based unit commitment problem (PBUCP), through the fast of researching the BSC technique. The proposed procedure is applied to IEEE 10-unit test system integrated with the wind generator system. While the second is an actual system in the Egyptian site at Hurghada. The results of this algorithm are compared with previous literature to illustrate the efficiency and capability of this algorithm. Based on the results obtained in the regulated system, the suggested procedure gives better results than the algorithm in previous literature, saves computational efforts, and increases the efficiency of the output power of each unit in the system and lowers the price of kWh. Besides, in the deregulated system the profit is high and the system is more reliable.展开更多
Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 y...Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.展开更多
The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electro...The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electrolyte interface layer is an effective strategy to improve the stability of Zn anodes.Herein,we report an ultrathin zincophilic ZnS layer as a model regu-lator.At a given cycling current,the cell with Zn@ZnS electrode displays a lower potential drop over the Helmholtz layer(stern layer)and a suppressed diffuse layer,indicating the regulated charge distribution and decreased electric double layer repulsion force.Boosted zinc adsorption sites are also expected as proved by the enhanced electric double-layer capacitance.Consequently,the symmetric cell with the ZnS protection layer can stably cycle for around 3,000 h at 1 mA cm^(-2) with a lower overpotential of 25 mV.When coupled with an I2/AC cathode,the cell demonstrates a high rate performance of 160 mAh g^(-1) at 0.1 A g^(-1) and long cycling stability of over 10,000 cycles at 10 A g^(-1).The Zn||MnO_(2) also sustains both high capacity and long cycling stability of 130 mAh g^(-1) after 1,200 cycles at 0.5 A g^(-1).展开更多
Nitrogen(N)significantly affects rice yield and lodging resistance.Previous studies have primarily investigated the impact of N management on rice lodging in conventional rice monoculture(RM);however,few studies have ...Nitrogen(N)significantly affects rice yield and lodging resistance.Previous studies have primarily investigated the impact of N management on rice lodging in conventional rice monoculture(RM);however,few studies have performed such investigations in rice-crayfish coculture(RC).We hypothesized that RC would increase rice lodging risk and that optimizing N application practices would improve rice lodging resistance without affecting food security.We conducted a two-factor(rice farming mode and N management practice)field experiment from2021 to 2022 to test our hypothesis.The rice farming modes included RM and RC,and the N management practices included no nitrogen fertilizer,conventional N application,and optimized N treatment.The rice yield and lodging resistance characteristics,such as morphology,mechanical and chemical characteristics,anatomic structure,and gene expression levels,were analyzed and compared among the treatments.Under the same N application practice,RC decreased the rice yield by 11.1-24.4% and increased the lodging index by 19.6-45.6% compared with the values yielded in RM.In RC,optimized N application decreased the plant height,panicle neck node height,center of gravity height,bending stress,and lodging index by 4.0-4.8%,5.2-7.8%,0.5-4.5%,5.5-10.5%,and 1.8-19.5%,respectively,compared with those in the conventional N application practice.Furthermore,it increased the culm diameter,culm wall thickness,breaking strength,and non-structural and structural carbohydrate content by 0.8-4.9%,2.2-53.1%,13.5-19.2%,2.2-24.7%,and 31.3-87.2%,respectively.Optimized N application increased sclerenchymal and parenchymal tissue areas of the vascular bundle at the culm wall of the base second internode.Furthermore,optimized N application upregulated genes involved in lignin and cellulose synthesis,thereby promoting lower internodes on the rice stem and enhancing lodging resistance.Optimized N application in RC significantly reduced the lodging index by 1.8-19.5%and stabilized the rice yield(>8,570 kg ha~(-1)on average).This study systematically analyzed and compared the differences in lodging characteristics between RM and RC.The findings will aid in the development of more efficient practices for RC that will reduce N fertilizer application.展开更多
The global shift towards sustainable food systems has sparked innovations in food sources and production systems,including cell-based meat,plant-based food products,precision fermentation,and 3D food printing.These ad...The global shift towards sustainable food systems has sparked innovations in food sources and production systems,including cell-based meat,plant-based food products,precision fermentation,and 3D food printing.These advancements pose regulatory challenges and opportunities,with China emerging as a critical player in adopting and regulating new food technologies.This review explores the international landscape of new food sources and production systems(NFPS),focusing on China’s role and regulatory approaches compared to global practices.Through this comparative analysis,we aim to contribute to the ongoing dialogue on food safety regulation,offering insights and recommendations for policymakers,industry stakeholders,and researchers engaged in the global food system’s evolution.This comprehensive overview underscores the dynamic nature of regulatory frameworks governing NFPS,highlighting the international efforts to ensure food safety,consumer protection,and the sustainable evolution of the food industry.展开更多
This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the sl...This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system.展开更多
In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communic...In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communication,and computing modules to support various requirements of robots.In the task process,different modules assist the robots to perform tasks in a closed-loop way,which is referred to as a sensing-communication-computing-control(SC3)loop.In this work,we investigate a UAV-aided system containing multiple SC^(3)loops,which leverages non-orthogonal multiple access(NOMA)for efficient resource sharing.We describe and compare three different modelling levels for the SC^(3)loop.Based on the entropy SC^(3)loop model,a sum linear quadratic regulator(LQR)control cost minimization problem is formulated by optimizing the communication power.Further for the assure-to-be-stable case,we show that the original problem can be approximated by a modified user fairness problem,and accordingly gain more insights into the optimal solutions.Simulation results demonstrate the performance gain of using NOMA in such task-oriented systems,as well as the superiority of our proposed closed-loop-oriented design.展开更多
This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe in...This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe internal model approach and the adaptive control technique, a distributed adaptive internal model isconstructed for each agent. Then, based on this internal model, a fully distributed ETC strategy composed ofa distributed event-triggered adaptive output feedback control law and a distributed dynamic event-triggeringmechanism is proposed, in which each agent updates its control input at its own triggering time instants. It isshown that under the proposed ETC strategy, the robust cooperative output regulation problem can be solvedwithout requiring either the global information associated with the communication topology or the bounds ofthe uncertain or unknown parameters in each agent and the exosystem. A numerical example is provided toillustrate the effectiveness of the proposed control strategy.展开更多
To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a ...To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems.展开更多
This paper aims to review the association between gut microbiota and respiratory system diseases, and explore their potential mechanisms and clinical significance. Gut microbiota, as an important microbial ecosystem i...This paper aims to review the association between gut microbiota and respiratory system diseases, and explore their potential mechanisms and clinical significance. Gut microbiota, as an important microbial ecosystem in the human body, has profound effects on host health. Recent studies have shown that the imbalance of gut microbiota is closely related to the occurrence and development of respiratory system diseases, including asthma, chronic obstructive pulmonary disease (COPD), and pneumonia. We comprehensively analyzed the current research progress and found that gut microbiota may affect respiratory system diseases through various pathways, including immune regulation, inflammatory responses, and airway mucus secretion. Additionally, environmental factors, lifestyle, and dietary habits are also closely related to gut microbiota and respiratory system health. Understanding the relationship between gut microbiota and respiratory system diseases not only helps to reveal the mechanisms of disease occurrence but also provides a theoretical basis for the development of new treatment strategies. Future research should focus on exploring the types and functions of gut microbiota, conducting clinical trials based on this, investigating the effects of gut microbiota modulation on the treatment and prevention of respiratory system diseases, and providing new directions for personalized medicine.展开更多
The recognition of the positive value of student diversity and their right to full participation are key aspects of inclusion as a means of managing heterogeneity of the school population from an equality perspective....The recognition of the positive value of student diversity and their right to full participation are key aspects of inclusion as a means of managing heterogeneity of the school population from an equality perspective.As the school cannot welcome the diversity of children without including their families,the same logic needs to apply to the relationship between the school and parents,particularly in the current environment where the school-family partnership appears as a privileged institutional leverage in the fight against inequalities at school.Based on an ethnographical study exploring how the relationship between the school and the families builds up in a Swiss school located in a context of strong cultural diversity,this paper interrogates how the school norm can be the main limitation to the inclusion of students and parents who are unfamiliar with the school.Derived from field observations and interviews,our results show how the teachers tend to approach their relationship with new students and their parents from the standpoint of narrowly defined expected models,leading them to engage in a vain attempt to conform the students and parents when they deviate from these models.The possibility of entering the school system for students and parents unfamiliar with school is hindered by the exclusive and excluding normativity on which the models of the child and the parent expected by the teachers are grounded.Based on these observations,we discuss how an inclusive approach seems to us to require in the first place a necessary process of decentering from the school and teachers,as a condition for recognition of the actual child and parent.展开更多
On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were pu...On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were put forward, and then the corresponding water moistures under water stress were obtained by conversing together with characteristic curve of water moisture.展开更多
Using the 3-year observational data from ChinaFlux (Chinese Terrestrial Ecosystem Flux Research Network), we studied the gas regulation flux dynamics and cumulative process of gas regulation value in Qianyanzhou mid...Using the 3-year observational data from ChinaFlux (Chinese Terrestrial Ecosystem Flux Research Network), we studied the gas regulation flux dynamics and cumulative process of gas regulation value in Qianyanzhou middle subtropical plantation (QYF) and Changbai Mountain temperate mixed forest (CBF). The gas regulation service was differentiated into vegetation gas regulation service and net ecosystem gas regulation service. Carbon tax approach, reforestation cost approach and industrial oxygen approach were employed to calculate gas regulation value. Results show that there was significant seasonal variation in vegetation gas regulation flux. Daily CO2 uptake fluxes averaged 82.00 kg·ha^-·d^-1 and 59.37 kg·ha^-·d^-1 and the corresponding 02 emission fluxes were 59.65 kg·ha^-·d^-1 and 43.19 kg·ha^-·d^-1 for QYF and CBF, respectively. The cumulative curves of vegetation gas regulation value always followed a sigmoid shape, and the annual gas regulation value produced by vegetation was RMB 14342.69 yuan·ha^-1 and RMB 10384.18 yuan·ha^-1 for both QYF and CBF, respectively. In terms of monthly net ecosystem gas regulation service, QYF appeared as a CO2 sink and O2 source for the whole year, while CBF appeared to be a CO2 sink and O2 source mainly in the period between May and September. The cumulative curves of net ecosystem gas regulation value presented a sigmoid ("S") shape for QYF, while a unimodal type curve for CBF. The annual net ecosystem gas regulation value was 8470.52 yuan·ha^-1 and 5091.98yuan·ha^-1 for QYF and CBF, respectively. The economic value of both the vegetation gas regulation service and net ecosystem gas regulation service were mainly produced between May and October.展开更多
It has been well established that the recovery ability of central nervous system (CNS) is very poor in adult mammals. As a result, CNS trauma generally leads to severe and persistent functional deficits. Thus, the i...It has been well established that the recovery ability of central nervous system (CNS) is very poor in adult mammals. As a result, CNS trauma generally leads to severe and persistent functional deficits. Thus, the investigation in this field becomes a "hot spot". Up to date, accumulating evidence supports the hypothesis that the failure of CNS neurons to regenerate is not due to their intrinsic inability to grow new axons, but due to their growth state and due to lack of a permissive growth environment. Therefore, any successful approaches to facilitate the regeneration of injured CNS axons will likely include multiple steps: keeping neurons alive in a certain growth-state, preventing the formation of a glial scar, overcoming inhibitory molecules present in the myelin debris, and giving direction to the growing axons. This brief review focused on the recent progress in the neuron regeneration of CNS in adult mammals.展开更多
Northern blot analysis was conducted with mitochondrial RNA from seedling leaves, floral buds, and developing seeds of NCa CMS, maintainer line and fertile F1 using ten mitochondrial genes as probes. The results revea...Northern blot analysis was conducted with mitochondrial RNA from seedling leaves, floral buds, and developing seeds of NCa CMS, maintainer line and fertile F1 using ten mitochondrial genes as probes. The results revealed that 9 out of the 10 mitochondrial genes, except for atp6, showed no difference in different tissues of the corresponding materials of NCα CMS system and that they might be constitutively expressed genes. Eight genes, such as orf139, orf222, atpl, cox1, cox2, cob, rm5S, and rm26S, showed no difference among the three tissues of all the materials detected. So the expression of these eight genes was not regulated by nuclear genes and was not tissue-specific. The transcripts of atp9 were identical among different tissues, but diverse among different materials, indicating that transcription of atp9 was neither controlled by nuclear gene nor tissue-specific. Gene atp6 displayed similar transcripts with the same size among different tissues of all the materials but differed in abundance among tissues of corresponding materials and its expression might be tissue-specific under regulation of nuclear gene. Moreover, three transcripts of orf222 were detected in the floral buds of NCa cms and fertile F1, but no transcript was detected in floral buds of the maintainer line.The transcription of orf139 was similar to that of orf222 but only two transcripts of 0.8 kb and 0.6 kb were produced. The atp9 probe detected a single transcript of 0.6 kb in NCa cms and in maintainer line and an additional transcript of 1.2 kb in fertile F1. The relationship of expression of orf222, orf139, and atp9 with NCa sterility was discussed.展开更多
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con...Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.展开更多
A stable CMOS low drop-out regulator without an off-chip capacitor for system-on-chip application is presen- ted. By using an on-chip pole splitting technique and an on-chip pole-zero canceling technique, high stabili...A stable CMOS low drop-out regulator without an off-chip capacitor for system-on-chip application is presen- ted. By using an on-chip pole splitting technique and an on-chip pole-zero canceling technique, high stability is achieved without an off-chip capacitor. The chip was implemented in CSMC's 0.5μm CMOS technology and the die area is 600μm×480μm. The error of the output voltage due to line variation is less than -+ 0.21% ,and the quiescent current is 39.8μA. The power supply rejection ratio at 100kHz is -33.9dB, and the output noise spectral densities at 100Hz and 100kHz are 1.65 and 0.89μV √Hz, respectively.展开更多
The basal ganglia(BG) act as a cohesive functional unit that regulates motor function,habit formation,and reward/addictive behaviors. However,it is still not well understood how the BG maintains wakefulness and suppre...The basal ganglia(BG) act as a cohesive functional unit that regulates motor function,habit formation,and reward/addictive behaviors. However,it is still not well understood how the BG maintains wakefulness and suppresses sleep to achieve al these fundamental functions until genetical y engineered systems developed these years. Significant research efforts have recently been directed at developing genetic-molecular tools to achieve reversible and cell-type specific in vivo silencing or activation of neurons in behaving animals. Optogenetic tools can be used both to specifically activate or inhibit neurons of interest and identify functional synaptic connectivity between specific neuronal populations,both in vivo and in brain slices. Another recently developed system by Roth and colleagues permits the selective and ″remote″ manipulation(activation and silencing) of neuronal activity via all 3 major GPCR signaling pathways(G_i,G_s and G_q). These so-called ″ designer receptors exclusively activated by designer drugs″(DREADD) involve mutant GPCRs that do not respond to their endogenous ligands but are responsive to otherwise inert biological compounds. Recently,we demonstrated the essential roles and the neural pathways of the neurons expressing adenosine A_(2A) receptors or dopamine D_1 receptors in the BG for sleep-wake regulation using the genetically engineered systems including optogenetics and DREADD. We proposed a plausible model in which the caudate-putamen and the nucleus accumbens integrates behavioral processes with sleep/wakefulness through adenosine and dopamine receptors.展开更多
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne...Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.展开更多
Neurons are highly polarized,morphologically asymmetric,and functionally compartmentalized cells that contain long axons extending from the cell body.For this reason,their maintenance relies on spatiotemporal regulati...Neurons are highly polarized,morphologically asymmetric,and functionally compartmentalized cells that contain long axons extending from the cell body.For this reason,their maintenance relies on spatiotemporal regulation of organelle distribution between the somatodendritic and axonal domains.Although some organelles,such as mitochondria and smooth endoplasmic reticulum,are widely distributed throughout the neuron,others are segregated to either the somatodendritic or axonal compartment.For example,Golgi outposts and acidified lysosomes are predominantly present in the somatodendritic domain and rarely distributed along the axon,whereas newly formed autophagosomes and synaptic vesicles are mainly distributed in the distal axon(Britt et al.,2016).展开更多
文摘In this paper, the impact of the wind power generation system on the total cost and profit of the system is studied by using the proposed procedure of binary Sine Cosine (BSC) optimization algorithm with optimal priority list (OPL) algorithm. As well, investigate the advantages of system transformation from a regulated system to a deregulated system and the difference in the objective functions of the two systems. The suggested procedure is carried out in two parallel algorithms;The goal of the first algorithm is to reduce the space of searching by using OPL, while the second algorithm adjusts BSC to get the optimal economic dispatch with minimum operation cost of the unit commitment (UCP) problem in the regulated system. But, in the deregulated system, the second algorithm adopts the BSC technique to find the optimal solution to the profit-based unit commitment problem (PBUCP), through the fast of researching the BSC technique. The proposed procedure is applied to IEEE 10-unit test system integrated with the wind generator system. While the second is an actual system in the Egyptian site at Hurghada. The results of this algorithm are compared with previous literature to illustrate the efficiency and capability of this algorithm. Based on the results obtained in the regulated system, the suggested procedure gives better results than the algorithm in previous literature, saves computational efforts, and increases the efficiency of the output power of each unit in the system and lowers the price of kWh. Besides, in the deregulated system the profit is high and the system is more reliable.
基金supported by National Health and Medical Research Council GNT1105374,GNT1137645,GNT2000766 and veski Innovation Fellowship(VIF23)to RP.
文摘Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.
基金financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC),through the Discovery Grant Program (RGPIN-2018-06725)the Discovery Accelerator Supplement Grant program (RGPAS-2018-522651)+2 种基金the New Frontiers in Research Fund-Exploration program (NFRFE-2019-00488)supported by funding from the Canada First Research Excellence Fund as part of the University of Alberta’s Future Energy Systems research initiative (FES-T06-Q03)supported by the Chinese Scholarship Council (CSC)(Grant No. 202006450027).
文摘The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electrolyte interface layer is an effective strategy to improve the stability of Zn anodes.Herein,we report an ultrathin zincophilic ZnS layer as a model regu-lator.At a given cycling current,the cell with Zn@ZnS electrode displays a lower potential drop over the Helmholtz layer(stern layer)and a suppressed diffuse layer,indicating the regulated charge distribution and decreased electric double layer repulsion force.Boosted zinc adsorption sites are also expected as proved by the enhanced electric double-layer capacitance.Consequently,the symmetric cell with the ZnS protection layer can stably cycle for around 3,000 h at 1 mA cm^(-2) with a lower overpotential of 25 mV.When coupled with an I2/AC cathode,the cell demonstrates a high rate performance of 160 mAh g^(-1) at 0.1 A g^(-1) and long cycling stability of over 10,000 cycles at 10 A g^(-1).The Zn||MnO_(2) also sustains both high capacity and long cycling stability of 130 mAh g^(-1) after 1,200 cycles at 0.5 A g^(-1).
基金supported by the National Natural Science Foundation of China(32301961)the Natural Science Foundation of Jiangsu Province,China(BK20210791)+3 种基金the General Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province,China(2023SJYB2057)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD)the Qinglan Project of Yangzhou University,Chinathe Lv Yang Jin Feng Talent Plan of Yangzhou City,China(YZLYJF2020PHD100)。
文摘Nitrogen(N)significantly affects rice yield and lodging resistance.Previous studies have primarily investigated the impact of N management on rice lodging in conventional rice monoculture(RM);however,few studies have performed such investigations in rice-crayfish coculture(RC).We hypothesized that RC would increase rice lodging risk and that optimizing N application practices would improve rice lodging resistance without affecting food security.We conducted a two-factor(rice farming mode and N management practice)field experiment from2021 to 2022 to test our hypothesis.The rice farming modes included RM and RC,and the N management practices included no nitrogen fertilizer,conventional N application,and optimized N treatment.The rice yield and lodging resistance characteristics,such as morphology,mechanical and chemical characteristics,anatomic structure,and gene expression levels,were analyzed and compared among the treatments.Under the same N application practice,RC decreased the rice yield by 11.1-24.4% and increased the lodging index by 19.6-45.6% compared with the values yielded in RM.In RC,optimized N application decreased the plant height,panicle neck node height,center of gravity height,bending stress,and lodging index by 4.0-4.8%,5.2-7.8%,0.5-4.5%,5.5-10.5%,and 1.8-19.5%,respectively,compared with those in the conventional N application practice.Furthermore,it increased the culm diameter,culm wall thickness,breaking strength,and non-structural and structural carbohydrate content by 0.8-4.9%,2.2-53.1%,13.5-19.2%,2.2-24.7%,and 31.3-87.2%,respectively.Optimized N application increased sclerenchymal and parenchymal tissue areas of the vascular bundle at the culm wall of the base second internode.Furthermore,optimized N application upregulated genes involved in lignin and cellulose synthesis,thereby promoting lower internodes on the rice stem and enhancing lodging resistance.Optimized N application in RC significantly reduced the lodging index by 1.8-19.5%and stabilized the rice yield(>8,570 kg ha~(-1)on average).This study systematically analyzed and compared the differences in lodging characteristics between RM and RC.The findings will aid in the development of more efficient practices for RC that will reduce N fertilizer application.
基金supported by the National Key Research and Development Program of China(2022YFF1102500)the Special Project of Central Guide to Local Science and Technology Development(Innovation platform construction for food green processing technology and intelligent equipment)(2022BGE247).
文摘The global shift towards sustainable food systems has sparked innovations in food sources and production systems,including cell-based meat,plant-based food products,precision fermentation,and 3D food printing.These advancements pose regulatory challenges and opportunities,with China emerging as a critical player in adopting and regulating new food technologies.This review explores the international landscape of new food sources and production systems(NFPS),focusing on China’s role and regulatory approaches compared to global practices.Through this comparative analysis,we aim to contribute to the ongoing dialogue on food safety regulation,offering insights and recommendations for policymakers,industry stakeholders,and researchers engaged in the global food system’s evolution.This comprehensive overview underscores the dynamic nature of regulatory frameworks governing NFPS,highlighting the international efforts to ensure food safety,consumer protection,and the sustainable evolution of the food industry.
基金supported by the National Natural Science Foundation of China (62073327,62273350)the Natural Science Foundation of Jiangsu Province (BK20221112)。
文摘This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFA0711301in part by the National Natural Science Foundation of China under Grant 62341110, Grant U22A2002, and Grant 62025110in part by the Suzhou Science and Technology Project
文摘In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communication,and computing modules to support various requirements of robots.In the task process,different modules assist the robots to perform tasks in a closed-loop way,which is referred to as a sensing-communication-computing-control(SC3)loop.In this work,we investigate a UAV-aided system containing multiple SC^(3)loops,which leverages non-orthogonal multiple access(NOMA)for efficient resource sharing.We describe and compare three different modelling levels for the SC^(3)loop.Based on the entropy SC^(3)loop model,a sum linear quadratic regulator(LQR)control cost minimization problem is formulated by optimizing the communication power.Further for the assure-to-be-stable case,we show that the original problem can be approximated by a modified user fairness problem,and accordingly gain more insights into the optimal solutions.Simulation results demonstrate the performance gain of using NOMA in such task-oriented systems,as well as the superiority of our proposed closed-loop-oriented design.
基金the National Natural Science Foundation of China(NSFC)-Excellent Young Scientists Fund(Hong Kong and Macao)under Grant 62222318.
文摘This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe internal model approach and the adaptive control technique, a distributed adaptive internal model isconstructed for each agent. Then, based on this internal model, a fully distributed ETC strategy composed ofa distributed event-triggered adaptive output feedback control law and a distributed dynamic event-triggeringmechanism is proposed, in which each agent updates its control input at its own triggering time instants. It isshown that under the proposed ETC strategy, the robust cooperative output regulation problem can be solvedwithout requiring either the global information associated with the communication topology or the bounds ofthe uncertain or unknown parameters in each agent and the exosystem. A numerical example is provided toillustrate the effectiveness of the proposed control strategy.
文摘To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems.
文摘This paper aims to review the association between gut microbiota and respiratory system diseases, and explore their potential mechanisms and clinical significance. Gut microbiota, as an important microbial ecosystem in the human body, has profound effects on host health. Recent studies have shown that the imbalance of gut microbiota is closely related to the occurrence and development of respiratory system diseases, including asthma, chronic obstructive pulmonary disease (COPD), and pneumonia. We comprehensively analyzed the current research progress and found that gut microbiota may affect respiratory system diseases through various pathways, including immune regulation, inflammatory responses, and airway mucus secretion. Additionally, environmental factors, lifestyle, and dietary habits are also closely related to gut microbiota and respiratory system health. Understanding the relationship between gut microbiota and respiratory system diseases not only helps to reveal the mechanisms of disease occurrence but also provides a theoretical basis for the development of new treatment strategies. Future research should focus on exploring the types and functions of gut microbiota, conducting clinical trials based on this, investigating the effects of gut microbiota modulation on the treatment and prevention of respiratory system diseases, and providing new directions for personalized medicine.
文摘The recognition of the positive value of student diversity and their right to full participation are key aspects of inclusion as a means of managing heterogeneity of the school population from an equality perspective.As the school cannot welcome the diversity of children without including their families,the same logic needs to apply to the relationship between the school and parents,particularly in the current environment where the school-family partnership appears as a privileged institutional leverage in the fight against inequalities at school.Based on an ethnographical study exploring how the relationship between the school and the families builds up in a Swiss school located in a context of strong cultural diversity,this paper interrogates how the school norm can be the main limitation to the inclusion of students and parents who are unfamiliar with the school.Derived from field observations and interviews,our results show how the teachers tend to approach their relationship with new students and their parents from the standpoint of narrowly defined expected models,leading them to engage in a vain attempt to conform the students and parents when they deviate from these models.The possibility of entering the school system for students and parents unfamiliar with school is hindered by the exclusive and excluding normativity on which the models of the child and the parent expected by the teachers are grounded.Based on these observations,we discuss how an inclusive approach seems to us to require in the first place a necessary process of decentering from the school and teachers,as a condition for recognition of the actual child and parent.
文摘On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were put forward, and then the corresponding water moistures under water stress were obtained by conversing together with characteristic curve of water moisture.
基金Chinese Terrestrial Ecosystem Flux Observational Research Network(ChinaFlux) for providing the observational data
文摘Using the 3-year observational data from ChinaFlux (Chinese Terrestrial Ecosystem Flux Research Network), we studied the gas regulation flux dynamics and cumulative process of gas regulation value in Qianyanzhou middle subtropical plantation (QYF) and Changbai Mountain temperate mixed forest (CBF). The gas regulation service was differentiated into vegetation gas regulation service and net ecosystem gas regulation service. Carbon tax approach, reforestation cost approach and industrial oxygen approach were employed to calculate gas regulation value. Results show that there was significant seasonal variation in vegetation gas regulation flux. Daily CO2 uptake fluxes averaged 82.00 kg·ha^-·d^-1 and 59.37 kg·ha^-·d^-1 and the corresponding 02 emission fluxes were 59.65 kg·ha^-·d^-1 and 43.19 kg·ha^-·d^-1 for QYF and CBF, respectively. The cumulative curves of vegetation gas regulation value always followed a sigmoid shape, and the annual gas regulation value produced by vegetation was RMB 14342.69 yuan·ha^-1 and RMB 10384.18 yuan·ha^-1 for both QYF and CBF, respectively. In terms of monthly net ecosystem gas regulation service, QYF appeared as a CO2 sink and O2 source for the whole year, while CBF appeared to be a CO2 sink and O2 source mainly in the period between May and September. The cumulative curves of net ecosystem gas regulation value presented a sigmoid ("S") shape for QYF, while a unimodal type curve for CBF. The annual net ecosystem gas regulation value was 8470.52 yuan·ha^-1 and 5091.98yuan·ha^-1 for QYF and CBF, respectively. The economic value of both the vegetation gas regulation service and net ecosystem gas regulation service were mainly produced between May and October.
基金supported by the National Natural Science Foundation of China(No.30571909,No.30872666)the Youth Teacher Foundation of Jiangsu Pro-vince(No.BU134701)China,and the Medical Development Foundation of Soochow University(No.EE134615)
文摘It has been well established that the recovery ability of central nervous system (CNS) is very poor in adult mammals. As a result, CNS trauma generally leads to severe and persistent functional deficits. Thus, the investigation in this field becomes a "hot spot". Up to date, accumulating evidence supports the hypothesis that the failure of CNS neurons to regenerate is not due to their intrinsic inability to grow new axons, but due to their growth state and due to lack of a permissive growth environment. Therefore, any successful approaches to facilitate the regeneration of injured CNS axons will likely include multiple steps: keeping neurons alive in a certain growth-state, preventing the formation of a glial scar, overcoming inhibitory molecules present in the myelin debris, and giving direction to the growing axons. This brief review focused on the recent progress in the neuron regeneration of CNS in adult mammals.
基金This work was supported by the National High Technology R&D Project of China (No.2002AA207009) and Wuhan Dawn Project for Youth (No. 20035002016-36).
文摘Northern blot analysis was conducted with mitochondrial RNA from seedling leaves, floral buds, and developing seeds of NCa CMS, maintainer line and fertile F1 using ten mitochondrial genes as probes. The results revealed that 9 out of the 10 mitochondrial genes, except for atp6, showed no difference in different tissues of the corresponding materials of NCα CMS system and that they might be constitutively expressed genes. Eight genes, such as orf139, orf222, atpl, cox1, cox2, cob, rm5S, and rm26S, showed no difference among the three tissues of all the materials detected. So the expression of these eight genes was not regulated by nuclear genes and was not tissue-specific. The transcripts of atp9 were identical among different tissues, but diverse among different materials, indicating that transcription of atp9 was neither controlled by nuclear gene nor tissue-specific. Gene atp6 displayed similar transcripts with the same size among different tissues of all the materials but differed in abundance among tissues of corresponding materials and its expression might be tissue-specific under regulation of nuclear gene. Moreover, three transcripts of orf222 were detected in the floral buds of NCa cms and fertile F1, but no transcript was detected in floral buds of the maintainer line.The transcription of orf139 was similar to that of orf222 but only two transcripts of 0.8 kb and 0.6 kb were produced. The atp9 probe detected a single transcript of 0.6 kb in NCa cms and in maintainer line and an additional transcript of 1.2 kb in fertile F1. The relationship of expression of orf222, orf139, and atp9 with NCa sterility was discussed.
基金financially supported by the National Natural Science Foundation of China(No.52377026 and No.52301192)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+4 种基金Postdoctoral Fellowship Program of CPSF under Grant Number(No.GZB20240327)Shandong Postdoctoral Science Foundation(No.SDCXZG-202400275)Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)China Postdoctoral Science Foundation(No.2024M751563)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.
文摘A stable CMOS low drop-out regulator without an off-chip capacitor for system-on-chip application is presen- ted. By using an on-chip pole splitting technique and an on-chip pole-zero canceling technique, high stability is achieved without an off-chip capacitor. The chip was implemented in CSMC's 0.5μm CMOS technology and the die area is 600μm×480μm. The error of the output voltage due to line variation is less than -+ 0.21% ,and the quiescent current is 39.8μA. The power supply rejection ratio at 100kHz is -33.9dB, and the output noise spectral densities at 100Hz and 100kHz are 1.65 and 0.89μV √Hz, respectively.
文摘The basal ganglia(BG) act as a cohesive functional unit that regulates motor function,habit formation,and reward/addictive behaviors. However,it is still not well understood how the BG maintains wakefulness and suppresses sleep to achieve al these fundamental functions until genetical y engineered systems developed these years. Significant research efforts have recently been directed at developing genetic-molecular tools to achieve reversible and cell-type specific in vivo silencing or activation of neurons in behaving animals. Optogenetic tools can be used both to specifically activate or inhibit neurons of interest and identify functional synaptic connectivity between specific neuronal populations,both in vivo and in brain slices. Another recently developed system by Roth and colleagues permits the selective and ″remote″ manipulation(activation and silencing) of neuronal activity via all 3 major GPCR signaling pathways(G_i,G_s and G_q). These so-called ″ designer receptors exclusively activated by designer drugs″(DREADD) involve mutant GPCRs that do not respond to their endogenous ligands but are responsive to otherwise inert biological compounds. Recently,we demonstrated the essential roles and the neural pathways of the neurons expressing adenosine A_(2A) receptors or dopamine D_1 receptors in the BG for sleep-wake regulation using the genetically engineered systems including optogenetics and DREADD. We proposed a plausible model in which the caudate-putamen and the nucleus accumbens integrates behavioral processes with sleep/wakefulness through adenosine and dopamine receptors.
基金supported by the Natural Science Foundation of Fujian Province,No.2021J02035(to WX).
文摘Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
基金supported by the Merkin PNNR Center(23-DF/C2/261)(to HS).
文摘Neurons are highly polarized,morphologically asymmetric,and functionally compartmentalized cells that contain long axons extending from the cell body.For this reason,their maintenance relies on spatiotemporal regulation of organelle distribution between the somatodendritic and axonal domains.Although some organelles,such as mitochondria and smooth endoplasmic reticulum,are widely distributed throughout the neuron,others are segregated to either the somatodendritic or axonal compartment.For example,Golgi outposts and acidified lysosomes are predominantly present in the somatodendritic domain and rarely distributed along the axon,whereas newly formed autophagosomes and synaptic vesicles are mainly distributed in the distal axon(Britt et al.,2016).