Objective: Based on a partialsubtilisin-like protease, Prl genomic sequence ofPythium guiyangense which has been cloned before, Panhandle PCR strategy was used to amplify the upstream flanking sequence adjacent to th...Objective: Based on a partialsubtilisin-like protease, Prl genomic sequence ofPythium guiyangense which has been cloned before, Panhandle PCR strategy was used to amplify the upstream flanking sequence adjacent to the known sequence of the Prl gene. Methods: The genomic DNA was firstly digested with BamH I and then treated with calf intestinal alkaline phosphatase(CIAP). Next, a 5' phosphorylated oligonucleotide was ligated to the 5' ends of BamH I -digested DNA. After denaturation, intmstrand annealing and polymemse extension, a pan with a handle was formed,and lastly the nested PCR was performed. Results: A 864 bp product was amplified,which was adjacent to the known sequence of Prl gene.The gene has been accessed by GenBank (Accession:JQ975036). Conclusion: Panhandle PCR is a quick and convenient approach for amplifying and identifying unknown partner genes,which facilitates cloning full-length Prl gene展开更多
The poly(vinylpyridine)(PVP) based(co)polymers are of particular interest in materials science, due to their multifunctionality and diverse applications. So far, there is no report on the sequence-regulated copolymeri...The poly(vinylpyridine)(PVP) based(co)polymers are of particular interest in materials science, due to their multifunctionality and diverse applications. So far, there is no report on the sequence-regulated copolymerization of vinylpyridines(VPs) and methacrylate monomer in one-step manner yet. Here we designed and synthesized a series of guanidine phosphines as Lewis base(LB), which is combined with bulky organoaluminium to construct Lewis pairs(LPs) for polymerization of VPs. The living/controlled polymerization of 4-vinylpyridine(4-VP) or 2-vinylpyridine(2-VP) can be accomplished with remarkable efficiency by such Lewis pair polymerization(LPP), furnishing polymers with high molecular weight(up to 288 kg/mol) and narrow molecular weight distribution(as low as 1.17). Mechanistic studies reveal the interaction of LPs and formation of zwitterionic intermediates, providing solid evidences to support the proposed polymerization mechanism. More importantly, by simply adjusting the LA dosage, this LPP strategy realizes the unprecedented control over the sequence regulation of 2-VP-based copolymers from gradient to block in one-step manner, regardless of the monomer ratio, which greatly expands the versatility of the LPP.展开更多
Recently an article published in Molecular Cell reveals the mechanism of a nuclear N6-methyladenosine(m^6A)reader,the YTH domain-containing protein 1(YTHDC1),in regulating pre-m RNA splicing[1].Meanwhile,two addit...Recently an article published in Molecular Cell reveals the mechanism of a nuclear N6-methyladenosine(m^6A)reader,the YTH domain-containing protein 1(YTHDC1),in regulating pre-m RNA splicing[1].Meanwhile,two additional articles published in Nature and Nature Chemical Biology report the展开更多
基金Supported by the Guangxi Department of education scientific research funds,China(No.200103YB154)
文摘Objective: Based on a partialsubtilisin-like protease, Prl genomic sequence ofPythium guiyangense which has been cloned before, Panhandle PCR strategy was used to amplify the upstream flanking sequence adjacent to the known sequence of the Prl gene. Methods: The genomic DNA was firstly digested with BamH I and then treated with calf intestinal alkaline phosphatase(CIAP). Next, a 5' phosphorylated oligonucleotide was ligated to the 5' ends of BamH I -digested DNA. After denaturation, intmstrand annealing and polymemse extension, a pan with a handle was formed,and lastly the nested PCR was performed. Results: A 864 bp product was amplified,which was adjacent to the known sequence of Prl gene.The gene has been accessed by GenBank (Accession:JQ975036). Conclusion: Panhandle PCR is a quick and convenient approach for amplifying and identifying unknown partner genes,which facilitates cloning full-length Prl gene
基金supported by the National Natural Science Foundation of China (22225104, 92356302 and 22071077)China Postdoctoral Science Foundation (2022TQ0115 and 2022M711297)。
文摘The poly(vinylpyridine)(PVP) based(co)polymers are of particular interest in materials science, due to their multifunctionality and diverse applications. So far, there is no report on the sequence-regulated copolymerization of vinylpyridines(VPs) and methacrylate monomer in one-step manner yet. Here we designed and synthesized a series of guanidine phosphines as Lewis base(LB), which is combined with bulky organoaluminium to construct Lewis pairs(LPs) for polymerization of VPs. The living/controlled polymerization of 4-vinylpyridine(4-VP) or 2-vinylpyridine(2-VP) can be accomplished with remarkable efficiency by such Lewis pair polymerization(LPP), furnishing polymers with high molecular weight(up to 288 kg/mol) and narrow molecular weight distribution(as low as 1.17). Mechanistic studies reveal the interaction of LPs and formation of zwitterionic intermediates, providing solid evidences to support the proposed polymerization mechanism. More importantly, by simply adjusting the LA dosage, this LPP strategy realizes the unprecedented control over the sequence regulation of 2-VP-based copolymers from gradient to block in one-step manner, regardless of the monomer ratio, which greatly expands the versatility of the LPP.
基金supported by the National Basic Research Program of China (973 ProgramGrant No.2014CB964900)the National Natural Science Foundation of China (Grant Nos.21432002,21372022,and 21210003)
文摘Recently an article published in Molecular Cell reveals the mechanism of a nuclear N6-methyladenosine(m^6A)reader,the YTH domain-containing protein 1(YTHDC1),in regulating pre-m RNA splicing[1].Meanwhile,two additional articles published in Nature and Nature Chemical Biology report the