期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Stable 4.5 V LiCoO_(2)cathode material enabled by surface manganese oxides nanoshell 被引量:2
1
作者 Jun Wang Si-Dong Zhang +5 位作者 Si-Jie Guo Si-Qi Lu Yan-Song Xu Jin-Yang Li An-Min Cao Li-Jun Wan 《Nano Research》 SCIE EI CSCD 2023年第2期2480-2485,共6页
Charging the LiCoO_(2)(LCO)cathode to a higher voltage,for example 4.5 V compared to the commonly used 4.2 V,is now intensively pursued so as to achieve a higher specific capacity.However,it suffers severe surface str... Charging the LiCoO_(2)(LCO)cathode to a higher voltage,for example 4.5 V compared to the commonly used 4.2 V,is now intensively pursued so as to achieve a higher specific capacity.However,it suffers severe surface structural degradation and detrimental interfacial side reactions between cathode and electrolyte,which lead to the fast capacity fading during long-term cycling.Here,a surface coating strategy was developed for the protection of 4.5 V LCO by constructing a manganese oxides(MOs)nanoshell around LCO particles,which was achieved through a solution-based coating process with success in controlling the growth kinetics of the coating species.We found that the introduction of the MOs nanoshell is highly effective in alleviating the organic electrolyte decomposition at the cathode surface,thus ensuring a much more stable LiF-rich cathode-electrolyte interface and an obvious lower interfacial resistance during electrochemical cycling.Meanwhile,this protection layer can effectively improve the structural stability of the cathode by hindering the cracks formation and structural degradation of LCO particles.Therefore,the MOs modified LCO exhibited excellent rate performance and a high discharge capacity retention of 81.5%after 100 cycles at 1 C compared with the untreated LCO(55.2%),as well as the improved thermal stability and cyclability at the elevated temperature.It is expected that this discovery and fundamental understanding of the surface chemistry regulation strategy provide promising insights into improving the reversibility and stability of LCO cathode at the cut-off voltage of 4.5 V. 展开更多
关键词 lithium-ion battery 4.5 V LiCoO_(2) manganese oxides surface coating interfacial stability regulation
原文传递
Active steering control strategy for articulated vehicles 被引量:7
2
作者 Kyong-il KIM Hsin GUAN +2 位作者 Bo WANG Rui GUO Fan LIANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第6期576-586,共11页
To improve maneuverability and stability of articulated vehicles, we design an active steering controller, including tractor and trailer controllers, based on linear quadratic regulator(LQR) theory. First, a three-deg... To improve maneuverability and stability of articulated vehicles, we design an active steering controller, including tractor and trailer controllers, based on linear quadratic regulator(LQR) theory. First, a three-degree-of-freedom(3-DOF) model of the tractor-trailer with steered trailer axles is built. The simulated annealing particle swarm optimization(SAPSO) algorithm is applied to identify the key parameters of the model under specified vehicle speed and steering wheel angle. Thus, the key parameters of the simplified model can be obtained according to the vehicle conditions using an online look-up table and interpolation. Simulation results show that vehicle parameter outputs of the simplified model and Truck Sim agree well, thus providing the ideal reference yaw rate for the controller. Then the active steering controller of the tractor and trailer based on LQR is designed to follow the desired yaw rate and minimize their side-slip angle of the center of gravity(CG) at the same time. Finally, simulation tests at both low speed and high speed are conducted based on the Truck Sim-Simulink program. The results show significant effects on the active steering controller on improving maneuverability at low speed and lateral stability at high speed for the articulated vehicle. The control strategy is applicable for steering not only along gentle curves but also along sharp curves. 展开更多
关键词 Articulated vehicle Sharp curve Lateral stability Linear quadratic regulator(LQR)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部