期刊文献+
共找到576篇文章
< 1 2 29 >
每页显示 20 50 100
Zonal method solution of radiative heat transfer in a one-dimensional long roller-hearth furnace in CSP 被引量:4
1
作者 Wenfei Wu Yanhui Feng Xinxin Zhang 《Journal of University of Science and Technology Beijing》 CSCD 2007年第4期307-311,共5页
A radiative heat transfer mathematical model for a one-dimensional long furnace was set up in a through-type roller-hearth furnace (TTRHF) in compact strip production (CSP). To accurately predict the heat exchange... A radiative heat transfer mathematical model for a one-dimensional long furnace was set up in a through-type roller-hearth furnace (TTRHF) in compact strip production (CSP). To accurately predict the heat exchange in the furnace, modeling of the complex gas energy-balance equation in volume zones was considered, and the heat transfer model of heating slabs and wall lines was coupled with the radiative heat transfer model to identify the surface zonal temperature. With numerical simulation, the temperature fields of gas, slabs, and wall lines in the furnace under one typical working condition were carefully accounted and analyzed. The fundamental theory for analyzing the thermal process in TI'RI-IF was provided. 展开更多
关键词 zonal method roller-hearth furnace radiative heat transfer mathematical model temperature fields
下载PDF
SIMULATION OF STEEL COIL HEAT TRANSFER IN HPH FURNACE 被引量:3
2
作者 M. Y. Gu G. Chen +1 位作者 M. C. Zhang X. C. Dai 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第5期647-652,共6页
The mathematical model has been estublished for the simulation of steel coil's heat transfer during annealing thermal process in HPH (high performance hydrogen) furnace. The equivalent radial thermal conductivity i... The mathematical model has been estublished for the simulation of steel coil's heat transfer during annealing thermal process in HPH (high performance hydrogen) furnace. The equivalent radial thermal conductivity is adopted by statistical analysis regression approach through the combination of a large quantity of production data collected in practice and theoretical analyses. The effect of the number of coils on circulating flow gas is considered for calculating the convection heat transfer coefficient, The temperature within the coil is predicted with the developed model during the annealing cycle including heating process and cooling process. The good consistently between the predicted results and the experimental data has demonstrated that the mathematical model established and the parameters identified by this paper are scientifically feasible and the effective method of calculation for coil equivalent radial heat transfer coefficient and circulating gas flow has been identified successfully, which largely enhances the operability and feasibility of the mathematic- model. This model provides a theoretical basis and an effective means to conduct studies on the impact that foresaid factors may imposed on the steel coil's temperature field, to analyze the stress within coils, to realize online control and optimal production and to increase facilily output by increasing heating and cooling rates of coils without producing higher thermal stress. 展开更多
关键词 furnace equivalent radial thermal conductivity convection heat transfer coefficient SIMULATION
下载PDF
Steady State Heat Transfer of Ladle Furnace During Steel Production Process 被引量:19
3
作者 Unal Camdali Murat.Tun 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第3期18-20,25,共4页
The heat transfer analysis was performed for an industrial ladle furnace (LF) with a capacity of 55-57 t in Turkey. The heat losses by conduction, convection and radiation from outer and bottom surfaces, top and ele... The heat transfer analysis was performed for an industrial ladle furnace (LF) with a capacity of 55-57 t in Turkey. The heat losses by conduction, convection and radiation from outer and bottom surfaces, top and electrodes of LF were determined in detail. Finally, some suggestions about decreasing heat losses were presented. 展开更多
关键词 heat transfer ladle furnace refining liquid steel
下载PDF
Numerical simulation of aluminum holding furnace with fluid-solid coupled heat transfer 被引量:8
4
作者 周乃君 周善红 +1 位作者 张家奇 潘青林 《Journal of Central South University》 SCIE EI CAS 2010年第6期1389-1394,共6页
To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mat... To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mathematics models of aluminum holding furnace in the premixed combustion processing were established based on mass conservation,moment conservation,momentum conservation,energy conservation and chemistry species conservation.Computational results agree well with the test data of the typical condition.The maximum combustion temperature is 1 850 K.The average temperature of the molten aluminum is 1 158 K,and the maximum temperature difference is about 240 K.The average temperature increases 0.3 ℃ while the temperature of combustion air increases 1 ℃.The optimal excess air ratio is 1.25-1.30. 展开更多
关键词 aluminum holding furnace COMBUSTION heat transfer fluid-solid coupled numerical simulation
下载PDF
Mathematical model on heat transfer of water-cooling steel-stick bottom electrode of DC electric arc furnace 被引量:1
5
作者 HaiXu XiaoLiu 《Journal of University of Science and Technology Beijing》 CSCD 2002年第5期338-342,共5页
For predicting and controlling the melted depth of bottomelectrode during the process of steelmaking, the water-cooling steel-stick electrode is taken as an example, to analyze the process ofheat transfer, then 3D mat... For predicting and controlling the melted depth of bottomelectrode during the process of steelmaking, the water-cooling steel-stick electrode is taken as an example, to analyze the process ofheat transfer, then 3D mathematical model by control capacity methodis built. At the same time, the measurement on the melted depth ofbottom electrode is conducted which verified the correctness of thebuilt mathematical model. On the base of verification, all kinds ofkey parameters are calculated through the application and a series ofresults are simulated. Finally, the optimum parameters are found andthe service life of bottom electrode is prolonged. 展开更多
关键词 DC electric arc furnace water-cooling steel-stick electrode MATHEMATICALMODEL heat transfer
下载PDF
Modeling and Simulation of Heat Transfer in Loaded Continuous Heat Treatment Furnace 被引量:2
6
作者 KANGJin-wu HUANGTian-you PURUSHOTHAMANRadhakrishnan 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第05B期764-768,共5页
Continuous furnaces are widely used in the heat treatment of mass-produced parts. However, the heating up process of parts in continuous furnace is still decided by experience. In this paper the heat transfer in the c... Continuous furnaces are widely used in the heat treatment of mass-produced parts. However, the heating up process of parts in continuous furnace is still decided by experience. In this paper the heat transfer in the continuous furnace is formulated firstly. The heat balance in each zone is discussed and equations are given. Coupled with the model for heat transfer between workpieces and furnace and the heat transfer in the workload as well presented in the former developed CHT-6/ for batch furnaces, a program CHT- for continuous furnaces was developed. The model deals with two typical movements of parts: continuous or step by step. The moving speed of parts and load pattern can be optimized based on the calculated temperature distributions and curves, especially, the fastest heated and slowest-heated temperature-distance profiles. A case study is carried out for the heat treatment of a kind of hook-shaped part. The calculated results are analyzed and in good agreement with the measured ones. 展开更多
关键词 热处理 传热 连续加热炉 建模 热平衡
下载PDF
Calculations of Heat Transfer in Torch Furnaces by Gas Volume Radiation Laws 被引量:1
7
作者 A. N. Makarov 《World Journal of Engineering and Technology》 2016年第3期488-503,共17页
The results stemming from the calculation of heat transfer in torch furnaces by the laws, relating to radiation from solid surfaces and gas volumes are analyzed. The article presents the laws for radiation from gas vo... The results stemming from the calculation of heat transfer in torch furnaces by the laws, relating to radiation from solid surfaces and gas volumes are analyzed. The article presents the laws for radiation from gas volumes and the procedure for calculating heat transfer in torch furnaces, fire boxes, and combustion chambers, elaborated on their basis. The example of heat transfer calculation in a torch furnace is given, and it is significantly non-uniform in nature. Non-uniformity of heat flux distribution on heating surfaces is given. According to the results of calculations, a new furnace is designed to decrease the non-uniformity of ingot heating, fuel rate, and increase the furnace capacity. The calculation results of the distribution of heat fluxes on the heating surfaces are given in changing torch geometric dimensions. These results are confirmed by experimental studies. 展开更多
关键词 heat transfer Gas Volumes heat Radiation Laws TORCH furnace
下载PDF
Theory and Practice of Heat Transfer in Electric Arc and Flare Furnaces and Power Plants
8
作者 Anatoliy Nikolaevich Makarov 《World Journal of Engineering and Technology》 2020年第4期739-755,共17页
The author describes the fundamental laws of physics, the laws of thermal radiation of ionized and non-ionized gas volumes. Based on open laws, a modern theory of heat transfer and methods for calculating heat transfe... The author describes the fundamental laws of physics, the laws of thermal radiation of ionized and non-ionized gas volumes. Based on open laws, a modern theory of heat transfer and methods for calculating heat transfer in electric arc and flare metallurgical furnaces, furnaces of steam boilers, and combustion chambers of gas turbine plants of power plants have been developed. The use of scientific discovery makes it possible to create innovative electric arc steel-smelting furnaces, flare heating furnaces, and combustion chambers in which the consumption of electricity and fuel is reduced, productivity and service life are increased, and the amount of harmful emissions into the environment is reduced. 展开更多
关键词 heat transfer Thermal Radiation Electric Arc TORCH furnaces Fire Cham-bers Combustion Chambers
下载PDF
Numerical Simulation of Heat Transfer of High-Temperature Slag Flow Inside the Blast Furnace Slag Trench
9
作者 Guangyan Fan Fuyong Su +1 位作者 Cunwang Li Bin Li 《Frontiers in Heat and Mass Transfer》 EI 2023年第1期281-292,共12页
To investigate the flow and heat transfer process of blast furnace slag through the slag trench after the slag is discharged,a three-dimensional physical model is established and simulated according to the actual size... To investigate the flow and heat transfer process of blast furnace slag through the slag trench after the slag is discharged,a three-dimensional physical model is established and simulated according to the actual size of the slag trench and the physical properties of the high-temperature slag.The temperature field and flow field distribution of the high-temperature slag liquid inside the slag trench is obtained by numerical simulation under different working conditions,and the effects of operating conditions such as slag trench inclination,high-temperature slag inlet flow rate,and inlet temperature are investigated.The results show that the flow rate of high-temperature slag is related to the slope of the slag trench,the greater the slope of the slag trench,the higher the flow rate of high-temperature slag,in which the highest average speed can reach 2.23 m/s when the slope is 8%;changing the inlet flow rate,flowing through the slag trench,the high-temperature slag reaches the highest flow rate at the same position,the overall flow rate changes tend to rise first and then decrease,and the greater the inlet flow rate,the higher the temperature change of high-temperature slag.The higher the inlet flow rate,the higher the temperature change of high-temperature slag,the higher the temperature of high-temperature slag out of the slag trench;the higher the inlet temperature,the higher the overall flow rate of high-temperature slag,and the position of the highest flow rate is relatively backward. 展开更多
关键词 Blast furnace slag heat transfer and flow characteristics slag gully numerical simulation
下载PDF
Role of radiative and convective heat transfer during heating of an ingot product in a tubular furnace:experiment and simulation
10
作者 Wen-chao Yang Yang Zhou +4 位作者 Jian Zhang Huan Liu Ying-jie Ren Jia-jun Chen Xian-guang Zhang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2022年第12期1978-1985,共8页
Convective heat transfer and radiative heat transfer are two essential heat transfer modes in the heating process of steel;it is important to understand the role of them during the heating process clearly.The effects ... Convective heat transfer and radiative heat transfer are two essential heat transfer modes in the heating process of steel;it is important to understand the role of them during the heating process clearly.The effects of the convective and radiative heat transfer during the heating process of a cast ingot in a tubular furnace have been studied by the designed natural and forced convection experiments and mathematical simulations.The heating time for the center of the ingot to reach the furnace temperature is decreased with the increase in furnace temperature.According to the experimental and simulation results,a model is proposed regarding the role of radiative and convective heat transfer in the heating process.At low temperature,the convective heat transfer plays a dominant role,while at high temperature,the influence of radiative heat transfer is larger.And a critical temperature exists between them.The forced convective heat transfer can enhance the influence of the convective heat transfer.The critical temperature can be shifted to higher temperatures. 展开更多
关键词 reheating Tubular furnace Cast ingot Convective heat transfer Radiative heat transfer
原文传递
Fluid Flow and Heat Transfer Modeling of AC Arc in Ferrosilicon Submerged Arc Furnace 被引量:6
11
作者 M Mohebi Moghadam S H Seyedein M Reza Aboutalebi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2010年第9期14-18,共5页
A two-dimensional mathematical model was developed to describe the heat transfer and fluid flow in an AC arc zone of a ferrosilicon submerged arc furnace. In this model, the time-dependent conservation equations of ma... A two-dimensional mathematical model was developed to describe the heat transfer and fluid flow in an AC arc zone of a ferrosilicon submerged arc furnace. In this model, the time-dependent conservation equations of mass, momentum, and energy in the specified domain of plasma zone were numerically solved by coupling with the Maxwell and Laplace equations for magnetic filed and electric potential, respectively. A control volume-based finite difference method was used to solve the governing equations in cylindrical coordinates. The reliability of the developed model was checked by experimental data from the previous available literature. The results of present model were in good agreement with the given data comparing with other models, because of solving the Maxwell and Laplace equations simul- taneously in order to calculate current density. In addition, parametric studies were carried out to evaluate the effects of electrical current and arc length on flow field and temperature distribution within the arc. According to the computed results, a lower power input led to a higher arc efficiency. 展开更多
关键词 plasma modeling heat transfer fluid flow AC submerged arc furnace
原文传递
Mathematical Model and Its Application of Radial Effective Thermal Conductivity for Coil Heat Transfer in HPH Furnace 被引量:2
12
作者 Wenfei Wu Fan Yu +1 位作者 Xinxin Zhang Yi Zuo 《Journal of Thermal Science》 SCIE EI CAS CSCD 2002年第2期134-137,共4页
Temperature uniformity of steel coils in High Performance Hydrogen bell-type annealing furnace has a significant effect on their quality and production. The hot rolled coil can be considered as a periodically laminate... Temperature uniformity of steel coils in High Performance Hydrogen bell-type annealing furnace has a significant effect on their quality and production. The hot rolled coil can be considered as a periodically laminated material composed of steel layers and interface layers in radial direction. A new formula for the radial effective thermal conductivity has been proposed, which is based on surface characteristic, strip thickness and compressive stress of the rolled coil. Furthermore, it has been used to develop a heat transfer mathematical model for steel coils in the HPH furnace. The calculated annealing curves using this mathematical model are in good agreement with the experimental data. 展开更多
关键词 HPH furnace thermal CONDUCTIVITY heat transfer MATHEMATICAL model.
原文传递
Numerical modeling of multiphase flow,heat transfer and titanium flow behavior in blast furnace hearth
13
作者 ZULLI Paul MALDONADO Daniel 《Baosteel Technical Research》 CAS 2010年第S1期12-,共1页
Understanding the complex phenomena in BF hearth is essential to increase furnace productivity and to extend furnace campaign.We have developed several continuum-based mathematical/numerical models to simulate the mul... Understanding the complex phenomena in BF hearth is essential to increase furnace productivity and to extend furnace campaign.We have developed several continuum-based mathematical/numerical models to simulate the multi-phase flow,heat transfer and chemical reactions in the BF hearth.These models have generated an improved insight on the mechanisms for liquid drainage efficiency,lining erosion and wall protection in BF hearth under operational conditions.The current paper gives an overview of these studies in three aspects:Gas flow and pressure on the liquid surface,and their effect on the drainage characteristics;The flow and temperature distributions of liquid iron in BF hearth,and the temperature distribution in the refractories;Finally,titanium behaviors due to titania injection to form Ti(C,N) -rich scaffold on the hearth surface,to protect the hearth from erosion. 展开更多
关键词 blast furnace mathematical modeling fluid flow heat transfer
下载PDF
Coupled Heat Transfer Simulation of the Spiral Water Wall in a Double Reheat Ultra-supercritical Boiler 被引量:2
14
作者 DONG Jiancong ZHOU Tuo +3 位作者 WU Xiaojiang ZHANG Jian FAN Haojie ZHANG Zhongxiao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2018年第6期592-601,共10页
This paper presented a coupled heat transfer model combining the combustion in the furnace and the ultra-supercritical(USC) heat transfer in the water wall tubes. The thermal analysis of the spiral water wall in a 100... This paper presented a coupled heat transfer model combining the combustion in the furnace and the ultra-supercritical(USC) heat transfer in the water wall tubes. The thermal analysis of the spiral water wall in a 1000 MW double reheat USC boiler was conducted by the coupled heat transfer simulations. The simulation results show that there are two peak heat flux regions on each wall of spiral water wall, where the primary combustion zone and burnt-out zone locate respectively. In the full load condition, the maximal heat flux of the primary combustion zone is close to 500 kW/m^2, which is higher than that in the conventional single reheat USC boilers. The heat flux along the furnace width presents a parabolic shape that the values in the furnace center are much higher than that in the corner regions. The distribution of water wall temperature has a perfect accordance with the heat flux distribution of the parabolic shape curves, which can illustrate the distribution of water wall temperature is mainly determined by heat flux on the water wall. The maximal water wall temperature occurs at the middle width of furnace wall and approaches 530°C, which can be allowed by the metal material of water wall tube 12Cr1MoVG. In the primary combustion zone, the wall temperatures in half load are almost close to the values in 75% load condition, caused by the heat transfer deterioration of the subcritical pressure fluid under the high heat flux condition. The simulation results in this study are beneficial to the better design and operational optimization for the double reheat USC boilers. 展开更多
关键词 coupled model heat transfer spiral water wall double reheat ULTRA-SUPERCRITICAL
原文传递
Influence of furnace temperature and non-uniform heat flux density on direct reduction process of newly designed carbon containing pellet
15
作者 LI Nan WANG Feng PAN Liang-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期296-312,共17页
In this study,innovative ellipsoid pellet with craters on its surface was designed,and the direct reduction process was compared with ellipsoid(without craters)and sphere pellets.In addition,furnace temperature and un... In this study,innovative ellipsoid pellet with craters on its surface was designed,and the direct reduction process was compared with ellipsoid(without craters)and sphere pellets.In addition,furnace temperature and uneven heat flux density effects on the pellet direct reduction process were also studied.The results show that ellipsoid pellet is better than that of spherical pellet on metallization ratio.However,under the condition of non-uniform heat flow,the ellipsoid pellet final metallization rate and zinc removal rate were lower.Although the heat transfer effect of ellipsoid pellet with craters was not improved significantly,the metallization rate and zinc removal rate were found improved,which will have a cumulative effect on the pellets direct reduction process in rotary hearth furnace.Under varying furnace temperature conditions,the pellet temperature was higher than that of the constant furnace temperature.After 1200 s,pellet Fe concentration increased to 123.6%,metallization rate and zinc removal rate increased to 113.7%and 102.2%,respectively.These results can provide references for the carbon-containing pellet design used in rotary hearth furnace. 展开更多
关键词 rotary hearth furnaces carbon containing pellets direct reduction process heat and mass transfer mathematical model
下载PDF
Theoretical Derivation of Thermal Value Equations for Heating Furnaces
16
作者 Hainan Wu Wenqiang Sun Jiuju Cai 《Open Journal of Applied Sciences》 2012年第2期104-109,共6页
Based on thermal value theory, the aim of this paper is to deduce the theoretical formulas for evaluating the energy effective utilization degree in technological pyrological processes exemplified by metallurgical hea... Based on thermal value theory, the aim of this paper is to deduce the theoretical formulas for evaluating the energy effective utilization degree in technological pyrological processes exemplified by metallurgical heating furnaces. Heat transfer models for continuous heating furnaces, batch-type heating furnaces, and regenerative heating furnaces are established, respectively. By analyzing the movement path of injected infinitesimal heat attached on steel or gas, thermal value equations of continuous, batch-type, and regenerative heating furnaces are derived. Then the influences of such factors as hot charging, gas preheating and intake time of heat on energy effective utilization degree are discussed by thermal value equations. The results show that thermal value rises with hot charging and air preheating for continuous heating furnaces, with shorter intake time when heat is attached on steel or longer intake time when heat is attached on gas for batch-type heating furnaces and that with more heat supply at early heating stage or less at late stage for regenerative heating furnaces. 展开更多
关键词 Thermal Value Continuous heatING furnace Batch-Type heatING furnace REGENERATIVE heatING furnace Energy Utilization DEGREE heat transfer
下载PDF
Improving Energy Efficiency of Tunnel Furnace by Using Heat Optimization Model
17
作者 Arup Mallick Subir Banerjee +5 位作者 Ranjay Kumar Singh P. N. Shivangi Pinder Singh Mandley Biswajit Ghosh Chaitanya Bhanu Mrityunjay Kumar Singh 《World Journal of Mechanics》 2024年第9期185-198,共14页
Reheating furnace of an integrated steel plant consumes intensive fuel as input energy to heat up stocks prior to hot rolling process. In current scenario, the elevated cost of productivity due to increasing fuel pric... Reheating furnace of an integrated steel plant consumes intensive fuel as input energy to heat up stocks prior to hot rolling process. In current scenario, the elevated cost of productivity due to increasing fuel price is emerging as a key concern for the steel industry. A continuous improvement in reduction of fuel consumption is one of the key objectives for the manufacturing units. Numerous research work is going on worldwide to increase the energy efficiency of reheating furnaces. Computational Fluid Dynamics (CFD) and numerical modelling are mostly being used for predicting thermal and reactive fluid characteristic inside a furnace. However, the said methods are very expensive and require a huge infrastructure to compute the results. In addition, these results are not available on real time basis to take corrective action due to high computational time. In this article, an alternative approach has been adopted where complete heat and mass balance of entire tunnel type reheating furnace has been carried out. This study includes first principle-based model where heat conduction, convection and radiation with combustion reactions of the fuel components have been considered. Based on these theoretical calculations, the model is used to identify heat losses at various locations of the furnace. Moreover, a method to optimize the mixing ratio of air and fuel (mixed gas) along with monitoring of heat recovery from combined recuperator have been covered. Based on the model outcome, a significant improvement in furnace efficiency has been achieved, leading to reduction in fuel consumption in the range of 12%. 展开更多
关键词 heat Balance Energy Efficiency reheating furnace Fuel Consumption Air-Fuel Ratio
下载PDF
Fluid Flow Modeling of Arc Plasma and Bath Circulation in DC Electric Arc Furnace 被引量:5
18
作者 WANG Feng-hua JIN Zhi-jian ZHU Zi-shu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第5期7-13,共7页
A mathematical model describing the flow field, heat transfer and the electromagnetic phenomenon in a DC electric arc furnace has been developed. First the governing equations in the arc plasma region are solved and t... A mathematical model describing the flow field, heat transfer and the electromagnetic phenomenon in a DC electric arc furnace has been developed. First the governing equations in the arc plasma region are solved and the calculated results of heat transfer, current density and shear stresses on the anode surface are used as boundary conditions in a model of molten bath. Then a two-dimensional time-dependent model is used to describe the flow field and electromagnetic phenomenon in the molten bath. Moreover, the effect of bottom electrode diameter on the circulation of molten bath is studied. 展开更多
关键词 DC electric arc furnace fluid flow heat transfer molten bath
下载PDF
A Compound Cycle for Power Generation by Utilizing Residual Heat of Flue Gas in Electric Steelmaking Process 被引量:1
19
作者 Fan Zhang Meibo Xing +1 位作者 Wentao Tang Ruixiang Wang 《Energy and Power Engineering》 2020年第2期45-58,共14页
Electric furnace short process steelmaking is one of the most important steelmaking methods in the world today, and the waste heat recovery potential of electric furnace flue gas is huge.?The research on the recovery ... Electric furnace short process steelmaking is one of the most important steelmaking methods in the world today, and the waste heat recovery potential of electric furnace flue gas is huge.?The research on the recovery of electric furnace flue gas waste heat is of great significance. In order to make better use of this part of the heat,?in this paper, a compound cycle of nitrogen Brayton cycle as a first-order cycle and toluene transcritical Rankine cycle as a second-order cycle is proposed to recover waste heat from furnace flue gas in steelmaking process for power generation. A mathematical model was established with the net output power as the objective function and the initial expansion pressure, the final expansion pressure, the initial expansion temperature and the initial pressure of the second cycle as the independent variables. The effect of multivariate on the net output power of the waste heat power generation cycle is studied, and then, the optimal parameters of the compound cycle are determined. The results show that under the general electric furnace steelmaking process, the power generation efficiency of this new cycle can be increased by 21.02% compared with the conventional cycle. 展开更多
关键词 ELECTRIC furnace STEELMAKING FLUE Gas Waste heat Compound Cycle heat transfer PINCH Net Output Power
下载PDF
纳米隔热材料在板坯加热炉水梁中的应用研究
20
作者 江华 《工业加热》 CAS 2024年第1期38-42,共5页
针对新型纳米绝热保温材料在高温板坯加热炉的应用,开展了传统水梁包扎方式与新型纳米隔热包扎方式的对比研究。通过数值仿真分析对不同方案隔热效果及温度分布进行了预测,并搭建水冷实验系统对采用不同包扎方式的水梁散热量进行测试分... 针对新型纳米绝热保温材料在高温板坯加热炉的应用,开展了传统水梁包扎方式与新型纳米隔热包扎方式的对比研究。通过数值仿真分析对不同方案隔热效果及温度分布进行了预测,并搭建水冷实验系统对采用不同包扎方式的水梁散热量进行测试分析。测试结果表明随着炉温逐步升高,纤维隔热材料的导热系数快速上升,常规纤维隔热水梁散热快速增加,而纳米隔热材料的导热系数增加较小,故此纳米隔热水梁的散热增加较为缓慢,两种方案散热量的差距随着炉温升高而逐渐增大。在此基础上开展了工程应用,应用效果与数值仿真及实验研究数据吻合良好。工程应用对比结果表明,纳米隔热水梁相对传统水梁包扎方案可实现水梁区域能耗降低25%,具有较好的经济和生态效益。 展开更多
关键词 步进梁式加热炉 纳米隔热材料 数值模拟 传热实验
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部