To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens...To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.展开更多
To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content chan...To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment.展开更多
The use of a glass-fiber reinforced composite in marine structures is becoming more common, particularly due to the potential weight savings. The mechanical response of the joint between a glass-fiber reinforced polym...The use of a glass-fiber reinforced composite in marine structures is becoming more common, particularly due to the potential weight savings. The mechanical response of the joint between a glass-fiber reinforced polymer (GRP) superstructure and a steel hull formed is examined and subsequently modified to improve performance through a combined program of modeling and testing. A finite-element model is developed to predict the response of the joint. The model takes into account the contact at the interface between different materials, progressive damage, large deformation theory, and a non-linear stress-strain relationship. To predict the progressive failure, the analysis combines Hashin failure criteria and maximum stress failure criteria. The results show stress response has a great influence on the strength and bearing of the joint. The Balsawood-steel interface is proved to be critical to the mechanical behavior of the joint. Good agreement between experimental results and numerical predictions is observed.展开更多
A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ...A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ31B in the joint were exposed in 0.1 M NaCl solution over time.Massive galvanic corrosion of AZ31B was observed as exposure time increased.The measured volume loss was converted into corrosion current that was at least 48 times greater than the corrosion current of AZ31B without galvanic coupling.Ninety percent of the mechanical joint integrity was retained for corroded F-SPR joints to 200 h and then decreased because of the massive volume loss of AZ31B。展开更多
In order to study themechanical properties of Z-pins reinforced laminated composite single-lap adhesively bonded joint under un-directional static tensile load,damage failure analysis of the joint was carried out byme...In order to study themechanical properties of Z-pins reinforced laminated composite single-lap adhesively bonded joint under un-directional static tensile load,damage failure analysis of the joint was carried out bymeans of test and numerical simulation.The failure mode and mechanism of the joint were analyzed by tensile failure experiments.According to the experimental results,the joint exhibits mixed failure,and the ultimate failure is Z-pins pulling out of the adherend.In order to study the failure mechanism of the joint,the finite element method is used to predict the failure strength.The numerical results are in good agreement with the experimental results,and the error is 6.0%,which proves the validity of the numerical model.Through progressive damage failure analysis,it is found that matrix tensile failure of laminate at the edge of Z-pins occurs first,then adhesive layer failure-proceeds at the edge of Z-pins,and finally matrix-fiber shear failure of the laminate takes place.With the increase of load,the matrix-fiber shear failure expands gradually in the X direction,and at the same time,the matrix tensile failure at the hole edge gradually extends in different directions,which is consistent with the experimental results.展开更多
A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is locate...A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.展开更多
It is common practice in the offshore industry to solve the punching shear problem due to compression by using doubler plate. The finite-element method is a useful tool for studying this problem. The aim of this paper...It is common practice in the offshore industry to solve the punching shear problem due to compression by using doubler plate. The finite-element method is a useful tool for studying this problem. The aim of this paper is to study the static strength of doubler plate reinforced Y-joints subjected to compression loading. The finite-element method is adopted in numerical parametric studies. The individual influences of the geometric parameters βand τd (doubler plate to chord wall thickness ratio) and ld/d1(dubler plate length to brace diameter ratio) on the ultimate strength are made clear. The results show the size of plate may have important effects on the strength of reinforced joints. It is found that the ultimate strength of Y-joints reinforced with appropriately proportioned doubler plates can be greatly improved nearly up tothree times to un-reinforced Y-joints.展开更多
The mechanical properties of Z-pins reinforced composites adhesively bonded single-lap joints(SLJs)under un-directional tension loading are investigated by experimental and numerical methods.Three kinds of joint confi...The mechanical properties of Z-pins reinforced composites adhesively bonded single-lap joints(SLJs)under un-directional tension loading are investigated by experimental and numerical methods.Three kinds of joint configurations,including SLJs with three/two rows of Z-pins and“I”array of Z-pins,are investigated by tension test.The failure modes and mechanism of reinforced joints with different Z-pins numbers and alignment are analyzed,and the comparison is performed for the failure strengths of no Z-pins and Z-pins reinforced joints.According to experimental results,failure modes of three kinds of joints are all mixed failure.It turns out that the Z-pins are pulled out ultimately.The strength of joints of more Z-pins at the end of the overlap area is relatively bigger for the joint of the same Z-pins numbers.The strength of joints with Z-pins compared with non Z-pins joints is growing at 16%.Finally,the three-dimensional distribution of interfacial stress in the lap zone of three kinds of Z-pins reinforced joints is simulated,and the numerical results are in good agreement with the experimental results.It is effective that the numerical calculation of stress analysis is verified.展开更多
The aim of our study is to reveal the effect of steel reinforcement details,tensile steel reinforcement ratio,compressed reinforcing steel ratio,reinforcing steel size,corner joint shape on the strength of reinforced ...The aim of our study is to reveal the effect of steel reinforcement details,tensile steel reinforcement ratio,compressed reinforcing steel ratio,reinforcing steel size,corner joint shape on the strength of reinforced concrete Fc'and delve into it for the most accurate details and concrete connections about the behavior and resistance of the corner joint of reinforced concrete,Depending on the available studies and sources in addition to our study,we concluded that each of these effects had a clear role in the behavior and resistance of the corner joint of reinforced concrete under the influence of the negative moment and yield stress.A study of the types of faults that can be reinforced angle joints obtains details and conditions of crushing that are almost identical for all types of steel reinforcement details and the basic requirements for the acceptable behavior of reinforced concrete joints in the installations and the efficiency of the joint and this may help us to prepare for disasters,whether natural or other,as happens with tremors The floor and failure that may occur due to wrong designs or old buildings and the possibility of using those connections to treat those joints and sections in reinforced or unarmed concrete facilities to preserve the safety of humans and buildings from sudden disasters and reduce and reduce risks,as well as qualitative control over the production of concrete connections and sections free from defects to the extreme.展开更多
To investigate the seismic behavior of specially shaped column joints with X-shaped reinforcement,two groups of specimens with or without X-shaped reinforcement in joint core region were tested under constant axial co...To investigate the seismic behavior of specially shaped column joints with X-shaped reinforcement,two groups of specimens with or without X-shaped reinforcement in joint core region were tested under constant axial compression load and low reversed cyclic loading,which imitated low to moderate earthquake force.The seismic behavior of specially shaped column joints with X-shaped reinforcement in terms of bearing capacity,displacement,ductility,hysteretic curve,stiffness degradation and energy dissipation was studied and compared to that without Xshaped reinforcement in joint core region.With the damage estimation model,the accumulated damage was analyzed.The shearing capacity formula of specially shaped column joints reinforced by X-shaped reinforcement was proposed with a simple form.The test results show that X-shaped reinforcement is an effective measure for improving the seismic behavior of specially shaped column joints including deformation behavior,ductility and hysteretic characteristic.All specimens were damaged with gradual stiffness degeneration.In addition,X-shaped reinforcement in the joint core region is an effective way to lighten the degree of cumulated damage.The good seismic performance obtained from the specially shaped column joint with X-shaped reinforcement can be used in engineering applications.The test value is higher than the calculated value,which indicates that the formula is safe for the design of specially shaped column joints.展开更多
The microstructure of laser welds of sub-micron particulate-reinforced aluminum matrix composite Al_2O_(3p)/6061Al and the weldability of the material were studied. Experimental results indicated that because of the h...The microstructure of laser welds of sub-micron particulate-reinforced aluminum matrix composite Al_2O_(3p)/6061Al and the weldability of the material were studied. Experimental results indicated that because of the huge specific surface area of the reinforcement, the interfacial reaction between the matrix and the reinforcement was re- strained intenslvely at elevated temperature and pulsed laser beam. The main factor affecting the weldability of the com- posite was the reinforcement segregation in the weld resulting from the push of the liquid/solid interface during the soli- dification of the molten pool. The laser pulse frequency directly affected the reinforcement segregation and the reinfor- cement distribution in the weld, so that the weldability of the composite could be improved by increasing the laser pulse frequency. On the basis of this, a satisfactory welded joint of sub-micron paniculate-reinforced aluminum matrix com- posite Al_2O_(3p)/6061Al was obtained by using appopriate welding parameters.展开更多
To improve the bending load-carrying capacity ( BLCC) of under-matched butt joint under four-point bending load in the elastic stage, the shape design of the reinforcement is studied based on the theoretics of mecha...To improve the bending load-carrying capacity ( BLCC) of under-matched butt joint under four-point bending load in the elastic stage, the shape design of the reinforcement is studied based on the theoretics of mechanics of materials. The concept, criterion, realization condition and design proposal of equal bending load-carrying capacity (EBLCC) are put forward. The theoretical analysis results have been verified by the finite element method. The simulation results are coincident basically with the ones of theoretical analysis. The research results show that the shape design of the reinforcement of EBLCC can improve BLCC of under-matched butt joint and the unilateral-side type reinforcement can replace double-side symmetry展开更多
A distributed reinforcement learning(RL)based resource management framework is proposed for a mobile edge computing(MEC)system with both latency-sensitive and latency-insensitive services.We investigate joint optimiza...A distributed reinforcement learning(RL)based resource management framework is proposed for a mobile edge computing(MEC)system with both latency-sensitive and latency-insensitive services.We investigate joint optimization of both computing and radio resources to achieve efficient on-demand matches of multi-dimensional resources and diverse requirements of users.A multi-objective integer programming problem is formulated by two subproblems,i.e.,access point(AP)selection and subcarrier allocation,which can be solved jointly by our proposed distributed RL-based approach with a heuristic iteration algorithm.The proposed algorithm allows for the reduction in complexity since each user needs to consider only its own selection of AP without knowing full global information.Simulation results show that our algorithm can achieve near-optimal performance while reducing computational complexity significantly.Compared with other algorithms that only optimize either of the two sub-problems,the proposed algorithm can serve more users with much less power consumption and content delivery latency.展开更多
The jacket offshore platform structures working in the environment are subjected to various external conditions,such as wave loads,wind loads and corrosion of sea water.Therefore,the research on reinforcement of tubul...The jacket offshore platform structures working in the environment are subjected to various external conditions,such as wave loads,wind loads and corrosion of sea water.Therefore,the research on reinforcement of tubular joints has great practical value for the safety of offshore platforms.In this article,the finite element(FE)models of T-type tubular joint(T-joint)and K-type tubular joint(K-joint)are established by ANSYS software.Triangular rib reinforcement and collar plate reinforcement are used to reinforce the tubular joints.The reinforcement effects are assessed through the ultimate bearing capacity,and the influences of parameters of the rib and the collar plate on the ultimate capacity are analyzed.Besides,the effects of the two reinforcement methods are compared under the combined loads,and the results show that the reinforcement of the ribbed plate is more effective in resisting the deformation caused by bending moment,while the reinforcement of the collar plate is more effective to avoid the plastic damage caused by the axial pressure.展开更多
Fatigue properties of smooth and reinforcement A6N01 aluminum alloy welded joints were characterized in this paper. Based on measured S-lgN curves and fatigue fracture morphologies, effect of weld reinforcement on the...Fatigue properties of smooth and reinforcement A6N01 aluminum alloy welded joints were characterized in this paper. Based on measured S-lgN curves and fatigue fracture morphologies, effect of weld reinforcement on the fatigue property of the welded joint was studied. Results show that the weld toe is the weakness region of the reinforcement welded joint due to the stress concentration in this area, thus the fatigue fracture occurred at the weld toe for all the reinforcement welded joints; while the fatigue property of the smooth welded joint was improved due to remove of the weld reinforcement, and the welding defect was the key factor of the fatigue fracture, thus its fracture zones mainly located at welding zone and fusion line.展开更多
Since masonry structures are prone to collapse in earthquakes,a novel joint reinforcement method with a polypropylene band(PP-band)and cement mortar(CM)has been put forward.Compared with the common reinforcement metho...Since masonry structures are prone to collapse in earthquakes,a novel joint reinforcement method with a polypropylene band(PP-band)and cement mortar(CM)has been put forward.Compared with the common reinforcement methods,this method not only facilitates construction but also ensures lower reinforcement cost.To systematically explore the influence of joint reinforcement on the seismic performance of masonry walls,quasi-static tests were carried out on six specimens with different reinforcement forms.The test results show that the joint action of PP-band and CM can significantly improve the specimen′s brittle failure characteristics and enhance the integrity of the specimen after cracking.Compared with the specimen without reinforcement,each of the seismic performance indexes of the joint reinforced specimen had obvious improvement.The maximum increased rate about peak load and ductility of the joint reinforced specimen is 100.6%and 233.4%,respectively.展开更多
The results of investigations of compressed reinforced masonry walls subjected to axial compression are presented. Tests were carried out using specimens made of clay bricks and cement-lime mortar. As reinforcement, s...The results of investigations of compressed reinforced masonry walls subjected to axial compression are presented. Tests were carried out using specimens made of clay bricks and cement-lime mortar. As reinforcement, smooth and spiral twisted longitudinal rods, two types of structural wire mesh and truss type reinforcement were used. Two percentages of bed joint reinforcement, about 0.1% and 0.05% were applied. For each type of reinforcement, three masonry walls were tested. Additionally, nine unreinforced models were also tested. The main aim of the investigations presented is to determine the effect of different types of reinforcement on the load capacity and failure. Measurement of the strains of reinforcing bars permitted the recording of the strain level at the moment of crack appearance and also at the moment of failure.展开更多
The work presents the results of tests on the shear parameters of walls made of AAC (autoclaved aerated concrete, fb = 4.0 N/mm2) on the system mortar for thin M5 and M10 joints (fm = 6.1 N/mm2 and fro = 11.9 N/mm2...The work presents the results of tests on the shear parameters of walls made of AAC (autoclaved aerated concrete, fb = 4.0 N/mm2) on the system mortar for thin M5 and M10 joints (fm = 6.1 N/mm2 and fro = 11.9 N/mm2) and on polyurethane glue and also walls without mortar (dry masonry). The wall compression strength (on mortar M5 class) (per EN 1052-1:2000) amounted tofc,mv= 2.97 N/mm2 (fk = 2.48 N/mm2), elastic modulus was Ecru = 2,040 N/mm2. Various structure of bed joints and head joints were applied and the following were used as reinforcement: steel trusses of EFZ 140/Z 140 type (Z1 type) and meshes made of plastics (Z2 type). Based on the tests carried out with regard to unreinforced elements, it was shown that the filling in of head joints with mortar had an advantageous effect on the values of cracking and destruction stresses. While, with the use of reinforcement, advantageous increase of stress was obtained only when the mortar was laid twice on both bed surfaces of masonry units. The application of reinforcement in the bed joints when the mortar was laid only on one bed joints surface of the masonry units reduced the values of cracking and destruction stresses in relation to the values obtained in the unreinforced walls.展开更多
In order to well protect Chinese ancient buildings, aseismic behaviors of Chinese ancient tenon-mortise joints strengthened by carbon fibre reinforced plastic (CFRP) are studied by experiments. Based on the actual s...In order to well protect Chinese ancient buildings, aseismic behaviors of Chinese ancient tenon-mortise joints strengthened by carbon fibre reinforced plastic (CFRP) are studied by experiments. Based on the actual size of an ancient building, a wooden frame model with a scale of 1 : 8 of the prototype structure is built considering the swallow-tail type of tenon-mortise connections. Low cyclic reversed loading tests are carried out including three groups of unstrengthened structures and two groups of structures strengthened with CFRP. Based on experimental data, moment-rotation angle hysteretic curves and skeleton curves for each joint are obtained. The energy dissipation capability, stiffness degradation and deformation performance of the joints before and after being strengthened are also analyzed. Results show that after being strengthened with CFRP, the tenon value pulled out of the mortise is reduced; the bending strength and the energy dissipation capabilities of the joint are enhanced; stiffness degradation of the joint is not obvious; and the deformation performance of the joint remains good. Thus, the CFRP has good effects on strengthening the tenon-mortise joints of Chinese ancient buildings.展开更多
基金National Natural Science Foundation of China Under Grant No.50878037
文摘To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.
基金Supported by Commission of Science Technology and Industry for National Defense of China(No.JPPT-115-477).
文摘To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant No 61004008), the Central Universities under Grant HEUCFR1001 and LBH-10138 Higher Sliding Mode Control for Underactuated Surface Ship.
文摘The use of a glass-fiber reinforced composite in marine structures is becoming more common, particularly due to the potential weight savings. The mechanical response of the joint between a glass-fiber reinforced polymer (GRP) superstructure and a steel hull formed is examined and subsequently modified to improve performance through a combined program of modeling and testing. A finite-element model is developed to predict the response of the joint. The model takes into account the contact at the interface between different materials, progressive damage, large deformation theory, and a non-linear stress-strain relationship. To predict the progressive failure, the analysis combines Hashin failure criteria and maximum stress failure criteria. The results show stress response has a great influence on the strength and bearing of the joint. The Balsawood-steel interface is proved to be critical to the mechanical behavior of the joint. Good agreement between experimental results and numerical predictions is observed.
基金financially sponsored by the US Department Energy Vehicle Technologies Office, as part of the Joining Core Programmanaged by UT-Battelle LLC for the US Department of Energy under Contract DE-AC05-00OR22725。
文摘A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ31B in the joint were exposed in 0.1 M NaCl solution over time.Massive galvanic corrosion of AZ31B was observed as exposure time increased.The measured volume loss was converted into corrosion current that was at least 48 times greater than the corrosion current of AZ31B without galvanic coupling.Ninety percent of the mechanical joint integrity was retained for corroded F-SPR joints to 200 h and then decreased because of the massive volume loss of AZ31B。
基金supported by Natural Science Talents Program of Lingnan Normal University(No.ZL2021011).
文摘In order to study themechanical properties of Z-pins reinforced laminated composite single-lap adhesively bonded joint under un-directional static tensile load,damage failure analysis of the joint was carried out bymeans of test and numerical simulation.The failure mode and mechanism of the joint were analyzed by tensile failure experiments.According to the experimental results,the joint exhibits mixed failure,and the ultimate failure is Z-pins pulling out of the adherend.In order to study the failure mechanism of the joint,the finite element method is used to predict the failure strength.The numerical results are in good agreement with the experimental results,and the error is 6.0%,which proves the validity of the numerical model.Through progressive damage failure analysis,it is found that matrix tensile failure of laminate at the edge of Z-pins occurs first,then adhesive layer failure-proceeds at the edge of Z-pins,and finally matrix-fiber shear failure of the laminate takes place.With the increase of load,the matrix-fiber shear failure expands gradually in the X direction,and at the same time,the matrix tensile failure at the hole edge gradually extends in different directions,which is consistent with the experimental results.
文摘A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.
文摘It is common practice in the offshore industry to solve the punching shear problem due to compression by using doubler plate. The finite-element method is a useful tool for studying this problem. The aim of this paper is to study the static strength of doubler plate reinforced Y-joints subjected to compression loading. The finite-element method is adopted in numerical parametric studies. The individual influences of the geometric parameters βand τd (doubler plate to chord wall thickness ratio) and ld/d1(dubler plate length to brace diameter ratio) on the ultimate strength are made clear. The results show the size of plate may have important effects on the strength of reinforced joints. It is found that the ultimate strength of Y-joints reinforced with appropriately proportioned doubler plates can be greatly improved nearly up tothree times to un-reinforced Y-joints.
基金This work was supported by Natural Science Talents Program of Lingnan Normal University(No.ZL2021011).
文摘The mechanical properties of Z-pins reinforced composites adhesively bonded single-lap joints(SLJs)under un-directional tension loading are investigated by experimental and numerical methods.Three kinds of joint configurations,including SLJs with three/two rows of Z-pins and“I”array of Z-pins,are investigated by tension test.The failure modes and mechanism of reinforced joints with different Z-pins numbers and alignment are analyzed,and the comparison is performed for the failure strengths of no Z-pins and Z-pins reinforced joints.According to experimental results,failure modes of three kinds of joints are all mixed failure.It turns out that the Z-pins are pulled out ultimately.The strength of joints of more Z-pins at the end of the overlap area is relatively bigger for the joint of the same Z-pins numbers.The strength of joints with Z-pins compared with non Z-pins joints is growing at 16%.Finally,the three-dimensional distribution of interfacial stress in the lap zone of three kinds of Z-pins reinforced joints is simulated,and the numerical results are in good agreement with the experimental results.It is effective that the numerical calculation of stress analysis is verified.
文摘The aim of our study is to reveal the effect of steel reinforcement details,tensile steel reinforcement ratio,compressed reinforcing steel ratio,reinforcing steel size,corner joint shape on the strength of reinforced concrete Fc'and delve into it for the most accurate details and concrete connections about the behavior and resistance of the corner joint of reinforced concrete,Depending on the available studies and sources in addition to our study,we concluded that each of these effects had a clear role in the behavior and resistance of the corner joint of reinforced concrete under the influence of the negative moment and yield stress.A study of the types of faults that can be reinforced angle joints obtains details and conditions of crushing that are almost identical for all types of steel reinforcement details and the basic requirements for the acceptable behavior of reinforced concrete joints in the installations and the efficiency of the joint and this may help us to prepare for disasters,whether natural or other,as happens with tremors The floor and failure that may occur due to wrong designs or old buildings and the possibility of using those connections to treat those joints and sections in reinforced or unarmed concrete facilities to preserve the safety of humans and buildings from sudden disasters and reduce and reduce risks,as well as qualitative control over the production of concrete connections and sections free from defects to the extreme.
基金Supported by National Natural Science Foundation of China (No. 50878141)Hebei Natural Science Foundation,China (No. E2011202013)High School of Hebei Science and Technology Research Youth Foundation,China(No. Q2012083)
文摘To investigate the seismic behavior of specially shaped column joints with X-shaped reinforcement,two groups of specimens with or without X-shaped reinforcement in joint core region were tested under constant axial compression load and low reversed cyclic loading,which imitated low to moderate earthquake force.The seismic behavior of specially shaped column joints with X-shaped reinforcement in terms of bearing capacity,displacement,ductility,hysteretic curve,stiffness degradation and energy dissipation was studied and compared to that without Xshaped reinforcement in joint core region.With the damage estimation model,the accumulated damage was analyzed.The shearing capacity formula of specially shaped column joints reinforced by X-shaped reinforcement was proposed with a simple form.The test results show that X-shaped reinforcement is an effective measure for improving the seismic behavior of specially shaped column joints including deformation behavior,ductility and hysteretic characteristic.All specimens were damaged with gradual stiffness degeneration.In addition,X-shaped reinforcement in the joint core region is an effective way to lighten the degree of cumulated damage.The good seismic performance obtained from the specially shaped column joint with X-shaped reinforcement can be used in engineering applications.The test value is higher than the calculated value,which indicates that the formula is safe for the design of specially shaped column joints.
基金This project is financially supported by the National Nature Science Fund (59785016) and the Opening Fund ([2000]002) of the N
文摘The microstructure of laser welds of sub-micron particulate-reinforced aluminum matrix composite Al_2O_(3p)/6061Al and the weldability of the material were studied. Experimental results indicated that because of the huge specific surface area of the reinforcement, the interfacial reaction between the matrix and the reinforcement was re- strained intenslvely at elevated temperature and pulsed laser beam. The main factor affecting the weldability of the com- posite was the reinforcement segregation in the weld resulting from the push of the liquid/solid interface during the soli- dification of the molten pool. The laser pulse frequency directly affected the reinforcement segregation and the reinfor- cement distribution in the weld, so that the weldability of the composite could be improved by increasing the laser pulse frequency. On the basis of this, a satisfactory welded joint of sub-micron paniculate-reinforced aluminum matrix com- posite Al_2O_(3p)/6061Al was obtained by using appopriate welding parameters.
文摘To improve the bending load-carrying capacity ( BLCC) of under-matched butt joint under four-point bending load in the elastic stage, the shape design of the reinforcement is studied based on the theoretics of mechanics of materials. The concept, criterion, realization condition and design proposal of equal bending load-carrying capacity (EBLCC) are put forward. The theoretical analysis results have been verified by the finite element method. The simulation results are coincident basically with the ones of theoretical analysis. The research results show that the shape design of the reinforcement of EBLCC can improve BLCC of under-matched butt joint and the unilateral-side type reinforcement can replace double-side symmetry
基金supported in part by the National Natural Science Foundation of China under Grant 61671074in part by Project No.A01B02C01202015D0。
文摘A distributed reinforcement learning(RL)based resource management framework is proposed for a mobile edge computing(MEC)system with both latency-sensitive and latency-insensitive services.We investigate joint optimization of both computing and radio resources to achieve efficient on-demand matches of multi-dimensional resources and diverse requirements of users.A multi-objective integer programming problem is formulated by two subproblems,i.e.,access point(AP)selection and subcarrier allocation,which can be solved jointly by our proposed distributed RL-based approach with a heuristic iteration algorithm.The proposed algorithm allows for the reduction in complexity since each user needs to consider only its own selection of AP without knowing full global information.Simulation results show that our algorithm can achieve near-optimal performance while reducing computational complexity significantly.Compared with other algorithms that only optimize either of the two sub-problems,the proposed algorithm can serve more users with much less power consumption and content delivery latency.
基金National Natural Science Foundation of China(Nos.51879272,51579246)Fundamental Research Funds for the Central Universities,China(No.18CX02074A)
文摘The jacket offshore platform structures working in the environment are subjected to various external conditions,such as wave loads,wind loads and corrosion of sea water.Therefore,the research on reinforcement of tubular joints has great practical value for the safety of offshore platforms.In this article,the finite element(FE)models of T-type tubular joint(T-joint)and K-type tubular joint(K-joint)are established by ANSYS software.Triangular rib reinforcement and collar plate reinforcement are used to reinforce the tubular joints.The reinforcement effects are assessed through the ultimate bearing capacity,and the influences of parameters of the rib and the collar plate on the ultimate capacity are analyzed.Besides,the effects of the two reinforcement methods are compared under the combined loads,and the results show that the reinforcement of the ribbed plate is more effective in resisting the deformation caused by bending moment,while the reinforcement of the collar plate is more effective to avoid the plastic damage caused by the axial pressure.
文摘Fatigue properties of smooth and reinforcement A6N01 aluminum alloy welded joints were characterized in this paper. Based on measured S-lgN curves and fatigue fracture morphologies, effect of weld reinforcement on the fatigue property of the welded joint was studied. Results show that the weld toe is the weakness region of the reinforcement welded joint due to the stress concentration in this area, thus the fatigue fracture occurred at the weld toe for all the reinforcement welded joints; while the fatigue property of the smooth welded joint was improved due to remove of the weld reinforcement, and the welding defect was the key factor of the fatigue fracture, thus its fracture zones mainly located at welding zone and fusion line.
基金National Natural Science Foundation of China under Grant Nos.51968047 and 51608249the Key Research and Development Program of Jiangxi Province under Grant No.20161BBG70058。
文摘Since masonry structures are prone to collapse in earthquakes,a novel joint reinforcement method with a polypropylene band(PP-band)and cement mortar(CM)has been put forward.Compared with the common reinforcement methods,this method not only facilitates construction but also ensures lower reinforcement cost.To systematically explore the influence of joint reinforcement on the seismic performance of masonry walls,quasi-static tests were carried out on six specimens with different reinforcement forms.The test results show that the joint action of PP-band and CM can significantly improve the specimen′s brittle failure characteristics and enhance the integrity of the specimen after cracking.Compared with the specimen without reinforcement,each of the seismic performance indexes of the joint reinforced specimen had obvious improvement.The maximum increased rate about peak load and ductility of the joint reinforced specimen is 100.6%and 233.4%,respectively.
文摘The results of investigations of compressed reinforced masonry walls subjected to axial compression are presented. Tests were carried out using specimens made of clay bricks and cement-lime mortar. As reinforcement, smooth and spiral twisted longitudinal rods, two types of structural wire mesh and truss type reinforcement were used. Two percentages of bed joint reinforcement, about 0.1% and 0.05% were applied. For each type of reinforcement, three masonry walls were tested. Additionally, nine unreinforced models were also tested. The main aim of the investigations presented is to determine the effect of different types of reinforcement on the load capacity and failure. Measurement of the strains of reinforcing bars permitted the recording of the strain level at the moment of crack appearance and also at the moment of failure.
文摘The work presents the results of tests on the shear parameters of walls made of AAC (autoclaved aerated concrete, fb = 4.0 N/mm2) on the system mortar for thin M5 and M10 joints (fm = 6.1 N/mm2 and fro = 11.9 N/mm2) and on polyurethane glue and also walls without mortar (dry masonry). The wall compression strength (on mortar M5 class) (per EN 1052-1:2000) amounted tofc,mv= 2.97 N/mm2 (fk = 2.48 N/mm2), elastic modulus was Ecru = 2,040 N/mm2. Various structure of bed joints and head joints were applied and the following were used as reinforcement: steel trusses of EFZ 140/Z 140 type (Z1 type) and meshes made of plastics (Z2 type). Based on the tests carried out with regard to unreinforced elements, it was shown that the filling in of head joints with mortar had an advantageous effect on the values of cracking and destruction stresses. While, with the use of reinforcement, advantageous increase of stress was obtained only when the mortar was laid twice on both bed surfaces of masonry units. The application of reinforcement in the bed joints when the mortar was laid only on one bed joints surface of the masonry units reduced the values of cracking and destruction stresses in relation to the values obtained in the unreinforced walls.
基金The Cultural Ministry Foundation of China(No.17-2009)the Research Foundation of Palace Museum(No.2007-4)
文摘In order to well protect Chinese ancient buildings, aseismic behaviors of Chinese ancient tenon-mortise joints strengthened by carbon fibre reinforced plastic (CFRP) are studied by experiments. Based on the actual size of an ancient building, a wooden frame model with a scale of 1 : 8 of the prototype structure is built considering the swallow-tail type of tenon-mortise connections. Low cyclic reversed loading tests are carried out including three groups of unstrengthened structures and two groups of structures strengthened with CFRP. Based on experimental data, moment-rotation angle hysteretic curves and skeleton curves for each joint are obtained. The energy dissipation capability, stiffness degradation and deformation performance of the joints before and after being strengthened are also analyzed. Results show that after being strengthened with CFRP, the tenon value pulled out of the mortise is reduced; the bending strength and the energy dissipation capabilities of the joint are enhanced; stiffness degradation of the joint is not obvious; and the deformation performance of the joint remains good. Thus, the CFRP has good effects on strengthening the tenon-mortise joints of Chinese ancient buildings.