期刊文献+
共找到22,284篇文章
< 1 2 250 >
每页显示 20 50 100
Simulation of Corrosion-Induced Cracking of Reinforced Concrete Based on Fracture Phase Field Method
1
作者 Xiaozhou Xia Changsheng Qin +2 位作者 Guangda Lu Xin Gu Qing Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2257-2276,共20页
Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle frac... Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle fracture of concrete,the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model.The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load.Then,the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC.The cracking patterns caused by non-uniform corrosion expansion are discussed for RC specimens with homogeneous macroscopically or heterogeneous with different polygonal aggregate distributions at the mesoscopic scale.Then,the effects of the protective layer on the crack propagation trajectory and cracking resistance are investigated,illustrating that the cracking angle and cracking resistance increase with the increase of the protective layer thickness,consistent with the experimental observation.Finally,the corrosion-induced cracking process of concrete specimens with large and small spacing rebars is simulated,and the interaction of multiple corrosion cracking is easily influenced by the reinforcement spacing,which increases with the decrease of the steel bar interval.These conclusions play an important role in the design of engineering anti-corrosion measures.The fracture phase field model can provide strong support for the life assessment of RC structures. 展开更多
关键词 Fracture phase field corrosion-induced cracking non-uniform corrosion expansion protective layer thickness reinforcement concrete
下载PDF
Electrochemical Study of the Corrosion Inhibitory Capacity of Calcined Attapulgite in Reinforced Concrete Medium
2
作者 Malang Bodian Kinda Hannawi +3 位作者 Dame Keinde Modou Fall Aveline Darquennes Prince William Agbodjan 《Advances in Materials Physics and Chemistry》 CAS 2024年第5期76-94,共19页
The durability of reinforced concrete structures is greatly influenced by the corrosion of the reinforcement. In addition to air pollution related to the repair of corroded structures, chloride ions are the main facto... The durability of reinforced concrete structures is greatly influenced by the corrosion of the reinforcement. In addition to air pollution related to the repair of corroded structures, chloride ions are the main factors of corrosion of reinforced concrete structures. This study aims to valorize a clay inhibitor against reinforcement corrosion in reinforced concrete. This clay (Attapulgite) was incorporated into reinforced concretes at different percentages of substitution of calcined attapulgite (0%, 5% and 10%) to cement in the formulation. The corrosion inhibitory power of attapulgite is evaluated in reinforced concretes subjected to the action of chloride ions at different intervals in the NaCl solution (1 day, 21 days and 45 days) by electrochemical methods (zero current chronopotentiometry, polarization curves and electrochemical impedance spectroscopy). This study showed that in the presence of chloride ions, the composition based on 10% attapulgite has an appreciable inhibitory effect with an average inhibitory efficiency of 82%. 展开更多
关键词 ATTAPULGITE Electrochemical Methods INHIBITOR reinforced concrete
下载PDF
A numerical case study on the long-term seismic assessment of reinforced concrete tunnels in corrosive environments 被引量:1
3
作者 Maria Antoniou Antonios Mantakas +1 位作者 Nikolaos Nikitas Raul Fuentes 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期551-572,共22页
The paper investigates the long-term seismic behaviour of an underground reinforced concrete(RC)metro tunnel in Santiago,Chile,considering the combined effects of chloride-induced corrosion and cumulative,low-amplitud... The paper investigates the long-term seismic behaviour of an underground reinforced concrete(RC)metro tunnel in Santiago,Chile,considering the combined effects of chloride-induced corrosion and cumulative,low-amplitude seismic shaking on the structure’s performance.The soil-tunnel response is evaluated with the aid of transient,nonlinear finite element analysis using a two-dimensional(2D)plane strain numerical model that adopts advanced nonlinear models for the simulation of soil and concrete plasticity and the dynamic stiffness behaviour.The effects of corrosion deterioration are demonstrated in terms of time-dependent loss of rebar area and cover concrete stiffness and strength.The study illustrates the influence of ageing and repeated seismic shaking on lining deformation,crack development,and the modal characteristics of the intact and degrading systems.The results indicate that multiple lowamplitude events drive the non-degrading RC tunnel beyond its elastic regime without significant structural response consequences.A noticeable impact of corrosion deterioration on the structure’s seismic performance is revealed,increasing with the number and intensity of earthquake events.Two different tunnel embedment depths are comparatively assessed.The analyses demonstrate larger coseismic section convergence in the case of the deeper tunnel,yet a less pronounced effect of ageing and successive seismic loading compared to the shallow section,which is evident in the RC lining cracks at the end of shaking. 展开更多
关键词 TUNNELS Reinforcement corrosion Ageing EARTHQUAKES Numerical modelling Long-term performance concrete cracking behaviour
下载PDF
Damage response of conventionally reinforced two-way spanning concrete slab under eccentric impacting drop weight loading 被引量:1
4
作者 S.M.Anas Mehtab Alam Mohd Shariq 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期12-34,共23页
Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impac... Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impact of projectiles generated by the tornado,falling construction equipment,and also from accidental explosions during their construction and service lifespan.Impacts due to rock/boulder falls do occur on the structures located especially in hilly areas.Such loadings are not predictable but may cause severe damage to the slab/structure.It stimulates structural engineers and researchers to investigate and understand the dynamic response of RC structures under such impulsive loading.This research work first investigates the performance of 1000×1000×75 mm^(3)conventionally reinforced two-way spanning normal strength concrete slab with only tension reinforcement(0.88%)under the concentric impact load(1035 N)using the finite element method based computer code,ABAQUS/Explicit-v.6.15.The impact load is delivered to the centroid of the slab using a solid-steel cylindroconical impactor(drop weight)with a flat nose of diameter 40 mm,having a total mass of 105 kg released from a fixed height of 2500 mm.Two popular concrete constitutive models in ABAQUS namely;Holmquist-Johnson-Cook(HJC)and Concrete Damage Plasticity(CDP),with strain rate effects as per fib MODEL CODE 2010,are used to model the concrete material behavior to impact loading and to simulate the damage to the slab.The slab response using these two models is analyzed and compared with the impact test results.The strain rate effect on the reinforcing steel bars has been incorporated in the analysis using the Malvar and Crawford(1998)approach.A classical elastoplastic kinematic idealization is considered to model the steel impactor and support system.Results reveal that the HJC model gives a little overestimation of peak displacement,maximum acceleration,and damage of the slab while the predictions given by the CDP model are in reasonable agreement with the experimental test results/observations available in the open literature.Following the validation of the numerical model,analyses have been extended to further investigate the damage response of the slab under eccentric impact loadings.In addition to the concentric location(P1)of the impacting device,five locations on a quarter of the slab i.e.,two along the diagonal(P2&P3),the other two along the mid-span(P4&P5),and the last one(P6)between P3 and P5,covering the entire slab,are considered.Computational results have been discussed and compared,and the evaluation of the most damaging location(s)of the impact is investigated.It has been found that the most critical location of the impact is not the centroid of the slab but the eccentric one with the eccentricity of 1/6th of the span from the centroid along the mid-span section. 展开更多
关键词 rc slabs Impact loading Eccentric impacts concrete models Finite element analysis Damage profiles Stresses Peak acceleration Failure modes Damage dissipation energy CRACKING Drop-weight locations
下载PDF
Evaluation of the Inhibitory Gel Aloe vera against Corrosion of Reinforcement Concrete in NaCl Medium
5
作者 Malang Bodian Dame Keinde +3 位作者 Kinda Hannawi Modou Fall Aveline Darquennes Prince William Agbodjan 《Materials Sciences and Applications》 2024年第5期101-112,共12页
Most reinforced concrete structures in seaside locations suffer from corrosion damage to the reinforcement, limiting their durability and necessitating costly repairs. To improve their performance and durability, we h... Most reinforced concrete structures in seaside locations suffer from corrosion damage to the reinforcement, limiting their durability and necessitating costly repairs. To improve their performance and durability, we have investigated in this paper Aloe vera extracts as a green corrosion inhibitor for reinforcing steel in NaCl environments. Using electrochemical methods (zero-intensity chronopotentiometry, Tafel lines and electrochemical impedance spectroscopy), this experimental work investigated the effect of these Aloe vera (AV) extracts on corrosion inhibition of concrete reinforcing bar (HA, diameter 12mm) immersed in a 0.5M NaCl solution. The results show that Aloe vera extracts have an average corrosion-inhibiting efficacy of around 86% at an optimum concentration of 20%. 展开更多
关键词 reinforced concrete Green Inhibitor Corrosion REINFOrcEMENT Electrochemical Methods
下载PDF
Analysis of Bonding Properties of Corroded Reinforcement Concrete
6
作者 Liang Fang Yingzhuo Liu 《Journal of Architectural Research and Development》 2024年第3期80-92,共13页
In order to investigate the degradation of bonding properties between corroded steel bars and concrete,this study employs the half-beam method to conduct bond-slip tests between corroded steel bars and concrete after ... In order to investigate the degradation of bonding properties between corroded steel bars and concrete,this study employs the half-beam method to conduct bond-slip tests between corroded steel bars and concrete after impressed-current accelerated corrosion of the steel bars in concrete.The effects of steel corrosion rate,steel bar diameter,steel bar strength grade,and concrete strength grade on the bonding properties between concrete and corroded steel bars were analyzed.The influence of different corrosion rates on specimens’bonding strength and bond-slip curves was determined,and a constitutive relationship for bond-slip between corroded steel bars and concrete was proposed.The results indicate that the ultimate bonding strength of corroded reinforced concrete specimens decreases with increasing corrosion rate.Additionally,an increase in corrosive crack width leads to a linear decrease in bonding strength.Evaluating the decline in adhesive properties through rust expansion crack width in engineering applications is feasible.Furthermore,a bond-slip constitutive relationship between corroded steel bars and concrete was established using relative bond stress and relative slip values,which aligned well with the experimental findings. 展开更多
关键词 CORROSION reinforced concrete Bonding property Constitutive relation
下载PDF
Analysis and Prediction Model Reinforced UHPC Shrinkage Property
7
作者 Shuwen Deng Zhiming Huang +1 位作者 Hao Chen Jia Hu 《Journal of Architectural Research and Development》 2024年第2期99-107,共9页
This paper explores the shrinkage of reinforced UHPC under high-temperature steam curing and natural curing conditions.The results are compared with the existing shrinkage prediction models.The results show that the m... This paper explores the shrinkage of reinforced UHPC under high-temperature steam curing and natural curing conditions.The results are compared with the existing shrinkage prediction models.The results show that the maximum shrinkage strain of reinforced UHPC after steam curing is 164μεand gradually becomes zero.As for natural curing,the maximum shrinkage strain is 173μεand the value stabilizes on the 10th day after pouring.This indicated that steam curing can significantly reduce shrinkage time.Compared with the plain UHPC tested in the previous literature,the structural reinforcement can significantly inhibit the UHPC shrinkage and greatly reduce the risk of cracking due to shrinkage.By comparing the results in this paper with the existing models for predicting the shrinkage strain development,it is found that the formula recommended in the French UHPC structural and technical specification is suitable for the shrinkage curve in the present paper. 展开更多
关键词 Ultra-high performance concrete(UHPC) UHPC shrinkage reinforced UHPC slab Shrinkage prediction
下载PDF
Damage of a large-scale reinforced concrete wall caused by an explosively formed projectile(EFP)
8
作者 Li-kai Hao Wen-bin Gu +5 位作者 Ya-dong Zhang Qi Yuan Xing-bo Xie Shao-xin Zou Zhen Wang Ming Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期280-297,共18页
To quickly break through a reinforced concrete wall and meet the damage range requirements of rescuers entering the building,the combined damage characteristics of the reinforced concrete wall caused by EFP penetratio... To quickly break through a reinforced concrete wall and meet the damage range requirements of rescuers entering the building,the combined damage characteristics of the reinforced concrete wall caused by EFP penetration and explosion shock wave were studied.Based on LS-DYNA finite element software and RHT model with modified parameters,a 3D large-scale numerical model was established for simulation analysis,and the rationality of the material model parameters and numerical simulation algorithm were verified.On this basis,the combined damage effect of EFP penetration and explosion shock wave on reinforced concrete wall was studied,the effect of steel bars on the penetration of EFP was highlighted,and the effect of impact positions on the damage of the reinforced concrete wall was also examined.The results reveal that the designed shaped charge can form a crater with a large diameter and high depth on the reinforced concrete wall.The average crater diameter is greater than 67 cm(5.58 times of charge diameter),and crater depth is greater than 22 cm(1.83 times of charge diameter).The failure of the reinforced concrete wall is mainly caused by EFP penetration.When only EFP penetration is considered,the average diameter and depth of the crater are 54.0 cm(4.50 times of charge diameter)and 23.7 cm(1.98 times of charge diameter),respectively.The effect of explosion shock wave on crater depth is not significant,resulting in a slight increase in crater depth.The average crater depth is 24.5 cm(2.04 times of charge diameter)when the explosion shock wave is considered.The effect of explosion shock wave on the crater diameter is obvious,which can aggravate the damage range of the crater,and the effect gradually decreases with the increase of standoff distance.Compared with the results for a plain concrete wall,the crater diameter and crater depth of the reinforced concrete wall are reduced by 5.94%and 9.96%,respectively.Compared to the case in which the steel bar is not hit,when the EFP hit one steel bar and the intersection of two steel bars,the crater diameter decreases by 1.36%and 5.45%respectively,the crater depth decreases by 4.92%and 14.02%respectively.The EFP will be split by steel bar during the penetration process,resulting in an irregular trajectory. 展开更多
关键词 reinforced concrete Explosively formed projectile(EFP) PENETRATION Explosion shock wave Numerical simulation
下载PDF
The Effects of Degradation Phenomena of the Steel-Concrete Interface in Reinforced Concrete Structures
9
作者 Bozabe Renonet Karka Bassa Bruno +1 位作者 Nadjitonon Ngarmaïm Alladjo Rimbarngaye 《Journal of Materials Science and Chemical Engineering》 CAS 2023年第3期1-21,共21页
Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in s... Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in service is a recurring problem due to the immediate or overtime appearance of cracks. The objective of this work was therefore to assess the damage phenomena of the steel-concrete interface in order to assess the performance of an RC structure. Samples of approximately 30 cm of reinforcement attacked by rust were taken from broken reinforced concrete columns and beams in order to determine the impact of corrosion on high adhesion steel (HA) and therefore on its ability to resist. The experimental results have shown that the corrosion degradation rates of reinforcing bars of different diameters increase as the diameter of the reinforcing bars decreases: 5% for HA12;23.75% for HA8 and 50% for HA6. Using the approach proposed by Mangat and Elgalf on the bearing capacity as a function of the progress of the corrosion phenomenon, these rates made it possible to assess the new fracture limits of corroded HA steels. For HA6 respectively HA8 and HA12, their initial limit resistances will decrease by 4/4, 3/4 and 1/4. Based on the results of this study and in order to guarantee their durability, an RC structure can be dimensioned by taking into account the effects of reinforcement corrosion. 展开更多
关键词 reinforced concrete Construction Steel-concrete Interface Corrosion Degradation Rate ADHESION Bearing Capacity
下载PDF
Mechanical Characterization of Rhecktophyllum Camerunense (RC) Fiber Reinforced Concrete
10
作者 Jean Calvin Bidoung Nicolas Stéphane Nyobe +1 位作者 Mey Mahamat Imar Lucien Meva’a 《Journal of Materials Science and Chemical Engineering》 2023年第8期20-32,共22页
This work presents the development and mechanical characterization of a concrete reinforced with plant fiber extracted from Rhecktophyllum Camerunense (RC), a plant found in the regions of Center and South Cameroon. A... This work presents the development and mechanical characterization of a concrete reinforced with plant fiber extracted from Rhecktophyllum Camerunense (RC), a plant found in the regions of Center and South Cameroon. A comparative study between ordinary concrete and concrete reinforced with RC fiber at different percentages (0.1%, 0.2% and 0.3%) was carried out. The mechanical characterization of the material consisted in studying the flexural, compressive and splitting tensile strength by using cylindrical specimens of dimensions 160 × 320 in accordance with standards EN 12390-3 and EN 12390-6. The study of the mechanical properties was completed by the three-point bending test using prismatic test specimens of dimension 40 × 40 × 160 made according to the EN 196 standard. It emerges from this work that the addition of RC fiber improves the mechanical properties of concrete up to 0.2% with a peak at 0.1% of fiber corresponding to respective increases of 9%, 16% and 6% of the values of mechanical resistance to compression, flexion and tension after 28 days. From 0.3% of fiber, the values of the mechanical characteristics of the composite drop to values lower than those of ordinary concrete. The density reduction rate at 28 days is about 10% compared to the mass of ordinary concrete. These results allow us to conclude that the RC fiber could be valorized for the production of lightweight concrete. 展开更多
关键词 reinforced concrete rc Fiber Mechanical Properties Lightweight concrete
下载PDF
Compressive Performance of Fiber Reinforced Recycled Aggregate Concrete by Basalt Fiber Reinforced Polymer-Polyvinyl Chloride Composite Jackets
11
作者 Zhijie Fan Huaxin Liu +2 位作者 Genjin Liu Xuezhi Wang Wenqi Cui 《Journal of Renewable Materials》 SCIE EI 2023年第4期1763-1791,共29页
The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding ba... The development of recycled aggregate concrete(RAC)provides a new approach to limiting the waste of natural resources.In the present study,the mechanical properties and deformability of RACs were improved by adding basalt fibers(BFs)and using external restraints,such as a fiber-reinforced polymer(FRP)jacket or a PVC pipe.Samples were tested under axial compression.The results showed that RAC(50%replacement of aggregate)containing 0.2%BFs had the best mechanical properties.Using either BFs or PVC reinforcement had a slight effect on the loadbearing capacity and mode of failure.With different levels of BFs,the compressive strengths of the specimens reinforced with 1-layer and 3-layer basalt fiber reinforced polymer(BFRP)increased by 6.7%–10.5%and 16.5%–23.7%,respectively,and the ultimate strains increased by 48.5%–80.7%and 97.1%–141.1%,respectively.The peak stress of the 3-layer BFRP-PVC increased by 42.2%,and the ultimate strain improved by 131.3%,relative to the control.This reinforcement combined the high tensile strength of BFRP,which improved the post-peak behavior,and PVC,which enhanced the structural durability.In addition,to investigate the influence of the various constraints on compressive behavior,the stress-strain response was analyzed.Based on the analysis of experimental results,a peak stress-strain model and an amended ultimate stress-strain model were proposed.The models were verified as well;the result showed that the predictions from calculations are generally consistent with the experimental data(error within 10%).The results of this study provide a theoretical basis and reference for future applications of fiber-reinforced recycled concrete. 展开更多
关键词 Basalt fiber reinforced polymer polyvinyl chloride recycled aggregate concrete axial compression performance stress-strain relationships stress-strain model
下载PDF
Experimental Study and Failure Criterion Analysis of Rubber Fibre Reinforced Concrete under Biaxial Compression-Compression
12
作者 Yanli Hu Peiwei Gao +2 位作者 Furong Li Zhiqing Zhao Zhenpeng Yu 《Journal of Renewable Materials》 SCIE EI 2023年第4期2055-2073,共19页
In order to examine the biaxial compression-compression properties of rubber fibre reinforced concrete(RFRC),an experimental study on RFRC under different lateral compressive stresses was carried out by considering di... In order to examine the biaxial compression-compression properties of rubber fibre reinforced concrete(RFRC),an experimental study on RFRC under different lateral compressive stresses was carried out by considering different rubber replacement rates and polypropylene fibre contents.The failure modes and mechanical property parameters of different RFRC working conditions were obtained from the experiment to explore the effects of rubber replacement rate and polypropylene fibre content on the biaxial compression-compression properties of RFRC.The following conclusions were drawn.Under the influence of lateral compressive stress,the biaxial compression-compression failure mode gradually developed from a columnar pattern to a flaky pattern,suggesting that the incorporation of rubber and polypropylene fibres into the concrete resulted in a significant change in the development of cracks.For different rubber replacement rates and polypropylene fibre contents,the vertical compressive stress exhibited the same developing trend under the influence of lateral compressive stress.Specifically,the lateral compressive stress imposed the minimum effect on the vertical compressive stress when the rubber replacement rate and polypropylene fibre content were 20%and 0.4%,respectively,and imposed the maximum effect when the rubber replacement rate and polypropylene fibre content were 20%and 0%,respectively.With the increase of rubber replacement rate,the vertical peak stress was significantly reduced,which implies that an appropriate amount of polypropylene fibres can increase the vertical peak stress to a certain extent.Then,the biaxial compression-compression mechanism of RFRC was analysed from the microscopic level by using scanning electron microscope(SEM).Meanwhile,based on Kupfer’s biaxial compression-compression failure criterion and the octahedral stress space,a biaxial compression-compression failure criterion for RFRC was proposed,which was proven to have good applicability.The research results of this study provide important theoretical basis for the engineering application and development of RFRC. 展开更多
关键词 Rubber fibre reinforced concrete(RFrc) biaxial compression-compression mechanical properties mechanism analysis failure criterion
下载PDF
Determination of Reflected Temperature in Active Thermography Measurements for Corrosion Quantification of Reinforced Concrete Elements
13
作者 Suyadi Kartorono Herlien Dwiarti Setio +1 位作者 Adang Surahman Ediansjah Zulkifli 《Structural Durability & Health Monitoring》 EI 2023年第3期195-208,共14页
This paper sums up the determining analysis of the measuring location of Treflusing a thermocouple during the thermography tests.Laboratory temperature distribution testing methods,analysis of value and location of Tre... This paper sums up the determining analysis of the measuring location of Treflusing a thermocouple during the thermography tests.Laboratory temperature distribution testing methods,analysis of value and location of Treflmeasurement are explained in this paper.The heat source is two halogen lamps of 500 watts eachfitted at a distance of 30–50 cm.Noises appearing during testing of thermography are corrected with measured T_(refl) value.The results of thermogram correction of corroded concrete surfaces using T_(refl) values are displayed in this paper too.The concrete surface temperature results of quantitative image processing method are compared to the experimental test results.The results showed good accuracy,which was seen from most errors<3%and the maximum error is<5%.The end of paper,explained of application Treflvalue to the corroded reinforced concrete thermogram. 展开更多
关键词 Reflected temperature active thermography quantitative analysis reinforced concrete corrosion
下载PDF
Mechanical Characterization of Rhecktophyllum Camerunense (RC) Fiber Reinforced Concrete
14
作者 Jean Calvin Bidoung Nicolas Stéphane Nyobe +1 位作者 Mey Mahamat Imar Lucien Meva’a 《Journal of Modern Physics》 2023年第8期20-32,共10页
This work presents the development and mechanical characterization of a concrete reinforced with plant fiber extracted from Rhecktophyllum Camerunense (RC), a plant found in the regions of Center and South Cameroon. A... This work presents the development and mechanical characterization of a concrete reinforced with plant fiber extracted from Rhecktophyllum Camerunense (RC), a plant found in the regions of Center and South Cameroon. A comparative study between ordinary concrete and concrete reinforced with RC fiber at different percentages (0.1%, 0.2% and 0.3%) was carried out. The mechanical characterization of the material consisted in studying the flexural, compressive and splitting tensile strength by using cylindrical specimens of dimensions 160 × 320 in accordance with standards EN 12390-3 and EN 12390-6. The study of the mechanical properties was completed by the three-point bending test using prismatic test specimens of dimension 40 × 40 × 160 made according to the EN 196 standard. It emerges from this work that the addition of RC fiber improves the mechanical properties of concrete up to 0.2% with a peak at 0.1% of fiber corresponding to respective increases of 9%, 16% and 6% of the values of mechanical resistance to compression, flexion and tension after 28 days. From 0.3% of fiber, the values of the mechanical characteristics of the composite drop to values lower than those of ordinary concrete. The density reduction rate at 28 days is about 10% compared to the mass of ordinary concrete. These results allow us to conclude that the RC fiber could be valorized for the production of lightweight concrete. 展开更多
关键词 reinforced concrete rc Fiber Mechanical Properties Lightweight concrete
下载PDF
Research on Technical Solutions to Renovate the Reinforced Concrete Constructions in Vietnam
15
作者 Hung Mai Sy 《Open Journal of Civil Engineering》 2023年第2期342-352,共11页
During the use of constructions, they will be degraded. Due to the negative impact on structures such as increase in vertical load, horizontal windy load needs to evaluate the current state of the constructions before... During the use of constructions, they will be degraded. Due to the negative impact on structures such as increase in vertical load, horizontal windy load needs to evaluate the current state of the constructions before renovating, especially the current state of the main structural system whether necessary to carry out repair and reinforcement or not. In addition, the inspection of the current status constructions before renovating is also the legal basis for the granting of construction permits to renovate and repair degraded works. Reinforced concrete buildings in the coastal areas in Vietnam, in particular, are working in the marine environment leading to damage the reinforced concrete construction. It should be significantly noted. Although there have been legal documents related to the inspection of constructions issued in Vietnam, the detailed contents and procedures of institution for each type of construction have not been mentioned yet. Therefore, the topic research paper of “research on technical solutions to renovate constructions with reinforced concrete structures in Vietnam” is to improve the quality and efficiency of construction. This investigation in Vietnam is very essential. This study uses the method of surveying the current state of the construction works in use, using the experimental sampling method to analyze and evaluate the damage of the work, then propose typical solutions to repair construction. The purpose of this study is to provide a process to check the damage of the works, and to propose solutions to repair them. This work is very important and has practical significance, helping managers to maintain works better. 展开更多
关键词 reinforced concrete Building Renovation reinforced concrete House
下载PDF
Comparative Evaluation of the Chemical Composition and Physical Properties of Reinforced Concrete Steel Bars Used in Construction in Senegal
16
作者 El Hadji Amadou Fall Sy Dame Keinde Malang Bodian 《Open Journal of Civil Engineering》 2023年第2期292-302,共11页
This article presents, the study of a comparative evaluation of the chemical composition and physical properties, linear mass deviations, of four (04) types of steel used in the construction sector in Senegal. Type 1 ... This article presents, the study of a comparative evaluation of the chemical composition and physical properties, linear mass deviations, of four (04) types of steel used in the construction sector in Senegal. Type 1 (E1), Type 2 (E2) and Type 3 (E3) steels are produced by locally established companies and Type 4 (E4) witness bars are imported from the France. The chemical analyses of the different types of steel were carried out by combustion, infrared (IR) detection for carbon and sulfur, by reducing fusion for nitrogen and by optical emission spectrometer (SEO) for the rest of the elements. The composition was determined on bars with a diameter of 10 mm. Linear mass deviations were evaluated for steels with a diameter of 8 mm, 10 mm and 12 mm. The results of the chemical analyses showed that the limit value for the percentage of carbon was exceeded by 29.16% for the steel, type 3. For the other types (1, 2 and 4), the limit values set out in the French standard NF EN 10,080 are not exceeded. As regards the relative differences in mass, the results showed that for steels of local manufacture, all the samples of bars with diameters 10 and 12 mm and 33% of steels with diameters 8 mm do not comply with the standard. The results also indicate that the chemical composition and relative linear mass deviations of the steels, type 4 comply with the standard. Thus, locally manufactured steels are not always suitable for use in reinforced concrete constructions. 展开更多
关键词 Local Manufacturing reinforced concrete DURABILITY Eurocode 2
下载PDF
Design and Construction Technology of Prefabricated Reinforced Concrete Slab Culverts
17
作者 Qiang Yang 《Journal of World Architecture》 2023年第5期52-59,共8页
Compared with traditional cast-in-situ concrete slab culverts,prefabricated reinforced concrete slab culverts can be produced more quickly and has strong quality controllability,strong earthquake resistance,and repeat... Compared with traditional cast-in-situ concrete slab culverts,prefabricated reinforced concrete slab culverts can be produced more quickly and has strong quality controllability,strong earthquake resistance,and repeatability.They will be the primary production method of slab culverts in the future.This article offers a comprehensive review of the design and construction technology associated with prefabricated reinforced concrete slab culverts.The objective is to provide a valuable reference for related enterprises,enhance the quality of design and construction in precast pile configuration,and,in turn,contribute to the advancement of construction projects within our country. 展开更多
关键词 Slab culvert Prefabricated reinforced concrete Design points Construction technology
下载PDF
近海大气环境下RC结构钢筋锈蚀程度预测 被引量:1
18
作者 郑山锁 梁泽田 +2 位作者 杨松 明铭 韩超伟 《重庆大学学报》 CAS CSCD 北大核心 2024年第2期22-31,共10页
钢筋锈蚀是影响近海大气环境下RC结构使用寿命的重要因素之一。为研究近海大气环境下混凝土碳化与氯离子侵蚀双重作用对钢筋锈蚀的影响,对沿海地区不同龄期钢筋混凝土结构进行了工程实测,包括混凝土抗压强度、碳化深度、钢筋表面氯离子... 钢筋锈蚀是影响近海大气环境下RC结构使用寿命的重要因素之一。为研究近海大气环境下混凝土碳化与氯离子侵蚀双重作用对钢筋锈蚀的影响,对沿海地区不同龄期钢筋混凝土结构进行了工程实测,包括混凝土抗压强度、碳化深度、钢筋表面氯离子浓度及锈蚀深度。基于实测结果,拟合得到了混凝土碳化深度与抗压强度间的关系模型,建立了同时考虑混凝土碳化深度与钢筋表面氯离子浓度的钢筋锈蚀深度预测模型。在此基础上,利用Abaqus分析软件对不同龄期、轴压比的RC框架柱进行了损伤塑性分析,得到了锈蚀RC框架柱抗震性能随服役龄期与轴压比的变化规律。 展开更多
关键词 rc结构 钢筋锈蚀模型 损伤塑性分析 混凝土碳化 氯离子腐蚀
下载PDF
纤维织物增强高延性混凝土加固RC短柱抗剪性能试验研究
19
作者 邓明科 雷恒 +2 位作者 张雨顺 郭莉英 张伟 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期79-89,共11页
为研究纤维织物增强高延性混凝土(TR-HDC)加固钢筋混凝土短柱的抗剪性能,设计了6根钢筋混凝土柱,包括2个对比柱和4个TR-HDC加固柱.通过低周反复荷载试验,对比分析剪跨比、纤维织物层数对试件破坏形态、变形、承载力和耗能能力的影响.结... 为研究纤维织物增强高延性混凝土(TR-HDC)加固钢筋混凝土短柱的抗剪性能,设计了6根钢筋混凝土柱,包括2个对比柱和4个TR-HDC加固柱.通过低周反复荷载试验,对比分析剪跨比、纤维织物层数对试件破坏形态、变形、承载力和耗能能力的影响.结果表明:采用TR-HDC加固钢筋混凝土短柱,可显著提高其抗剪承载力;TR-HDC与原混凝土柱协同工作性能良好,加固后的混凝土柱的变形、承载力和耗能能力明显提高;增加纤维织物的层数对钢筋混凝土短柱的抗剪承载力提高幅度较小,但可大幅增强柱的耗能和变形能力;剪跨比较大时,更有利于发挥TR-HDC加固材料的力学性能.基于桁架-拱模型,提出TR-HDC加固钢筋混凝土短柱的抗剪承载力计算方法,计算结果较准确. 展开更多
关键词 低周反复荷载 纤维织物增强高延性混凝土 加固 rc短柱 抗剪承载力
下载PDF
非对称集中荷载下无腹筋RC梁受剪性能试验研究
20
作者 袁健 刘家栋 段绍伟 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期141-148,共8页
非对称集中荷载作用下钢筋混凝土无腹筋简支梁具有两个不同的剪跨比,而两剪跨段受剪承载力与剪力作用之间的相对大小存在不确定性.通过开展6根非对称和4根对称集中荷载作用下钢筋混凝土无腹筋简支梁受剪性能试验研究,获取了破坏形态、荷... 非对称集中荷载作用下钢筋混凝土无腹筋简支梁具有两个不同的剪跨比,而两剪跨段受剪承载力与剪力作用之间的相对大小存在不确定性.通过开展6根非对称和4根对称集中荷载作用下钢筋混凝土无腹筋简支梁受剪性能试验研究,获取了破坏形态、荷载-跨中位移曲线和纵向受拉钢筋应变,并分析了《混凝土结构设计规范》(GB 50010—2010)公式、修正压力场理论、基于截面应变分析的抗剪模型和Zsutty统计公式的适用性.结果表明,对于小剪跨比恒为1.0的无腹筋简支梁,大剪跨比为2.0~4.0的梁均在大剪跨段发生剪切破坏;当大剪跨比由3.0增大至3.5时,梁的极限承载力出现由大剪跨段控制转变为小剪跨段控制的现象《.混凝土结构设计规范》(GB50010—2010)预测非对称集中荷载作用下钢筋混凝土无腹筋简支梁发生剪切破坏的位置与试验结果相反,而Zsutty统计公式的预测效果最好. 展开更多
关键词 非对称荷载 钢筋混凝土 无腹筋梁 受剪性能 静力试验
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部