期刊文献+
共找到1,013篇文章
< 1 2 51 >
每页显示 20 50 100
Fiber-reinforced Mechanism and Mechanical Performance of Composite Fibers Reinforced Concrete 被引量:4
1
作者 申俊敏 ZHANG Yancong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期121-130,共10页
To understand the enhancing effect and fiber-reinforced mechanism of composite fibers reinforced cement concrete, the influences of composite fibers on micro-cracks and the distribution of composite fibers were evalua... To understand the enhancing effect and fiber-reinforced mechanism of composite fibers reinforced cement concrete, the influences of composite fibers on micro-cracks and the distribution of composite fibers were evaluated by optical electron micrometer(OEM) and scanning electron microscope(SEM). Three kinds of fiber, such as polyacrylonitrile-based carbon fiber, basalt fiber, and glass fiber, were used in the composite fibers reinforced cement concrete. The composite fibers could form a stable structure in concrete after the liquid-phase coupling treatment, gas-liquid double-effect treatment, and inert atmosphere drying. The mechanical properties of composite fibers reinforced concrete(CFRC) were studied by universal test machine(UTM). Moreover, the effect of composite fibers on concrete was analyzed based on the toughness index and residual strength index. The results demonstrated that the composite fibers could improve the mechanical properties of concrete, while the excessive amount of composite fibers had an adverse effect on the mechanical properties of concrete. The composite fibers could significantly improve the toughness index of CFRC, and the increment rate is more than 30%. The composite fibers could form a mesh structure, which could promote the stability of concrete and guarantee the excellent mechanical properties. 展开更多
关键词 CEMENT concrete composite fibers mechanical performance fiber-reinforced mechanism
下载PDF
Mechanical Behavior of Rectangular Steel-Reinforced ECC/Concrete Composite Column under Eccentric Compression 被引量:2
2
作者 潘金龙 鲁冰 +2 位作者 顾大伟 夏正昊 夏天阳 《Transactions of Tianjin University》 EI CAS 2015年第3期269-277,共9页
In order to improve the seismic performance, deformation ability and ultimate load-carrying capacity of columns with rectangular cross section, engineered cementitious composite(ECC) is introduced to partially substit... In order to improve the seismic performance, deformation ability and ultimate load-carrying capacity of columns with rectangular cross section, engineered cementitious composite(ECC) is introduced to partially substitute concrete in the edge zone of reinforced concrete columns and form reinforced ECC/concrete composite columns.Firstly, based on the assumption of plane remaining plane and the simplified constitutive models, the calculation method of the load-carrying capacity of reinforced ECC/concrete columns is proposed. The stress and strain distributions and crack propagation of the composite columns in different states of eccentric compressive loading are analyzed. Then, nonlinear finite element analysis is conducted to study the mechanical performance of reinforced ECC/concrete composite columns with rectangular cross section. It is found that the simulation results are in good agreement with the theoretical results, indicating that the proposed method for calculating the load-carrying capacity of concrete/ECC composite columns is valid. Finally, based on the proposed method, the effects of ECC thickness, compressive strength of concrete and longitudinal reinforcement ratio on the mechanical performance of reinforced ECC/ concrete composite columns are analyzed. Calculation results indicate that increasing the thickness of ECC layer or longitudinal reinforcement ratio can effectively increase the ultimate load-carrying capacity of the composite column with both small and large eccentricity, but increasing the strength of concrete can only increase the ultimate loadcarrying capacity of the composite column with small eccentricity. 展开更多
关键词 钢筋混凝土柱 矩形截面柱 偏心受压 ECC 组合柱 力学行为 极限承载能力 水泥复合材料
下载PDF
Seismic retrofitting of reinforced concrete frame structures using GFRP-tube-confined-concrete composite braces 被引量:1
3
作者 Nasim S. Moghaddasi B Zhang Yunfeng Hu Xiaobin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第1期91-105,共15页
This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete comp... This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete composite brace, is comprised of concrete confined by a GFRP tube and an inner steel core for energy dissipation. Together with a contribution from the GFRP-tube confined concrete, the composite brace shows a substantially increased stiffness to control story drift, which is often a preferred feature in seismic retrofitting. An analysis model is established and implemented in a general finite element analysis program - OpenSees, for simulating the load-displacement behavior of the composite brace. Using this model, a parametric study of the hysteretic behavior (energy dissipation, stiffness, ductility and strength) of the composite brace was conducted under static cyclic loading and it was found that the area ratio of steel core to concrete has the greatest influence among all the parameters considered. To demonstrate the application of the composite brace in seismic retrofitting, a three-story nonductile reinforced concrete (RC) frame structure was retrofitted with the composite braces. Pushover analysis and nonlinear time-history analyses of the retrofitted RC frame structure was performed by employing a suite of 20 strong ground motion earthquake records. The analysis results show that the composite braces can effectively reduce the peak seismic responses of the RC frame structure without significantly increasing the base shear demand. 展开更多
关键词 BRACE composite confined concrete glass-fiber-reinforced polymer frame nonlinear analysis RETROFIT seismic
下载PDF
Experimental Research on Shear Behavior of Reinforced Concrete Composite Beams Under Uniformly Distributed Load
4
作者 ZHAO Shunbo Ass. Prof., North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450045, P. R. China. 《China Ocean Engineering》 SCIE EI 1998年第4期467-476,共10页
An experimental program was carried out to study the shear behavior of the reinforced concrete composite beam (RCCB) subjected to two-phase uniformly distributed load. A total of 12 reinforced concrete composite beams... An experimental program was carried out to study the shear behavior of the reinforced concrete composite beam (RCCB) subjected to two-phase uniformly distributed load. A total of 12 reinforced concrete composite beams were tested: 10 of them were the RCCB subjected to two-phase uniformly distributed load, the other 2 were the comparative reinforced concrete beams cast at the same time as the RCCB subjected to one-phase uniformly distributed load. The interface of precast unit and recast concrete was natural and rough. The test range of the main composite factors: the ratio of precast section depth to composite section depth was from 0.35 to 0.65, the ratio of first-phase load moment to precast section ultimate bearing moment was from 0.25 to 0.65. Based on the test results, the stresses of the longitudinal reinforcements and stirrups, the load-bearing properties of the interface, the crack state and the failure characteristics of the RCCB under uniformly distributed load are discussed. The effects of the stirrups, the concrete strength and the composite factors on the shear resistance of the RCCB are analyzed, and the method for evaluating the shear resistance of the RCCB is proposed. 展开更多
关键词 reinforced concrete composite beam shear resistance composite factor mechanism of failure
下载PDF
Fatigue tests of composite beam by steel fiber reinforced self-stressing concrete in the hogging bending
5
作者 胡铁明 黄承逵 +1 位作者 梁振宇 陈小锋 《Journal of Shanghai University(English Edition)》 CAS 2010年第6期430-436,共7页
Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated ... Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated composite layer tensile strain under the hogging bending of inverted loading composite beams, giving the relationship under the different fatigue stress ratios between fatigue cycles and steel bar’s stress range, crack width, stiffness loss and damage, etc., in composite layer. This article established fatigue life equation, and analyzed SFRSC reinforced mechanism to crack width and stiffness loss. The results show that SFRSC as the composite beam concrete has excellent properties of crack resistance and tensile, can reinforce the fatigue crack width and stiffness loss of composite beams, and improve the durability and in normal use of composite beams in the hogging bending zone. 展开更多
关键词 steel fiber reinforced self-stressing concrete (SFRSC) composite beam hogging bending FATIGUE
下载PDF
Fatigue properties of special kind of reinforced concrete composite beams
6
作者 胡铁明 黄承逵 陈小锋 《Journal of Central South University》 SCIE EI CAS 2010年第1期142-149,共8页
The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interfa... The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-bearing state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam. 展开更多
关键词 混凝土复合材料 钢筋混凝土 疲劳性能 自应力混凝土 混凝土组合梁 建筑钢筋 光束 结合界面
下载PDF
Study on Interface mechanical behavior of steel tube reinforced concrete composite pile
7
作者 ZHAO Jiehao 《International English Education Research》 2016年第4期93-94,共2页
关键词 钢管混凝土桩 界面力学 复合桩 行为研究 力学性能 打浆性能 复合界面 超声散斑
下载PDF
Experimental investigation of engineered geopolymer composite for structural strengthening against blast loads
8
作者 Shan Liu Chunyuan Liu +3 位作者 Yifei Hao Yi Zhang Li Chen Zhan Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期496-509,共14页
The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolyme... The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolymer composite(EGC)is a promising material featured by eco-friendly,fast-setting and strain-hardening characteristics for emergent strengthening and construction.However,the fiber optimization for preparing EGC and its protective effect on structural elements under blast scenarios are uncertain.In this study,laboratory tests were firstly conducted to evaluate the effects of fiber types on the properties of EGC in terms of workability,dry shrinkage,and mechanical properties in compression,tension and flexure.The experimental results showed that EGC containing PE fiber exhibited suitable workability,acceptable dry shrinkage and superior mechanical properties compared with other types of fibers.After that,a series of field tests were carried out to evaluate the effectiveness of EGC retrofitting layer on the enhancement of blast performance of typical elements.The tests include autoclaved aerated concrete(AAC)masonry walls subjected to vented gas explosion,reinforced AAC panels subjected to TNT explosion and plain concrete slabs subjected to contact explosion.It was found that EGC could effectively enhance the blast resistance of structural elements in different scenarios.For AAC masonry walls and panels,with the existence of EGC,the integrity of specimens could be maintained,and their deflections and damage were significantly reduced.For plain concrete slabs,the EGC overlay could reduce the diameter and depth of the crater and spallation of specimens. 展开更多
关键词 Engineered geopolymer composites Fiber optimization Strengthening material Blast resistance Masonry wall reinforced AAC panel Plain concrete slab
下载PDF
Experimental and analytical study on seismic behavior of steel-concrete multienergy dissipation composite shear walls 被引量:4
9
作者 Dong Hongying Cao Wanlin +2 位作者 Wu Haipeng Qiao Qiyun Yu Chuanpeng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第1期125-139,共15页
In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is p... In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is proposed. In order to study the multi-energy dissipation behavior and restorability after an earthquake, two stages of low cyclic loading tests were carded out on ten test specimens. In the first stage, test on five specimens with different number of SP deep beams was carried out, and the test lasted until the displacement drift reached 2%. In the second stage, thin SPs were welded to both sides of the five specimens tested in the first stage, and the same test was carried out on the repaired specimens (designated as new specimens). The load-bearing capacity, stiffness, ductility, hysteretic behavior and failure characteristics were analyzed for both stages and the results are discussed herein. Extrapolating from these results, strength calculation models and formulas are proposed herein and simulations using ABAQUS carried out, they show good agreement with the test results. The study demonstrates that SRC columns, SP deep beams, concrete wall and energy dissipation strips cooperate well and play an important role in energy dissipation. In addition, this study shows that the shear wall has good recoverability after an earthquake, and that the welding of thin SP's to repair a deformed wall is a practicable technique. 展开更多
关键词 steel reinforced concrete steel plate deep beam multi energy dissipation composite shear wall seismic behavior
下载PDF
A Fiber Pull-Out Based Model for Synthetic Fiber Reinforced Concrete Beams under a Flexural Load 被引量:1
10
作者 Alessandro Paglia 《Open Journal of Civil Engineering》 2013年第3期202-217,共16页
This work is intended to be a simple contribution to building a model able to implement theoretical results related to the random oriented fiber reinforced concrete in a procedure that could be used in structures anal... This work is intended to be a simple contribution to building a model able to implement theoretical results related to the random oriented fiber reinforced concrete in a procedure that could be used in structures analysis and design involving fiber reinforced elements. Here follows a short outline: In the introduction chapter the problem is presented together the work done. Section 2 develops some ancillary concepts of this material and its mechanical properties, while in Section 3, following the path of other researchers, the assumptions made to solve the problem are presented, together with the most relevant results related to presence of 3D randomly oriented fiber. In the following section a review of the mechanical process of fiber pull-out is done, and the results, mostly due to Victor Li researches, of a 3D randomly oriented synthetic fiber stress vs crack opening in a pull-out process from a cement matrix. In Section 5 the author, after making some assumptions about the configuration of the strain and crack geometry in the cross section where failure is assume to occur under flexural bending moment, the resultant stress is integrated to find the resultant internal moment vs increasing strain and crack width. In this analysis, the crack bridging law for synthetic fiber in FRC presented in the previous section is taken into account. In Section 6, a procedure to find a cross section configuration in equilibrium under external bending moment has been built. Under the assumption of a perfectly plastic collapse mechanism a numerical simulation is conducted on a specimen that undergoes a four-point bending test. A comparison with the trend of a similar test on a synthetic FRC sample has been done. The work is completed by the conclusions that could be inferred from this work. 展开更多
关键词 FIBER reinforced concrete concrete SAMPLE Test SYNTHETIC FIBER composite Materials
下载PDF
Function-Integrative Textile Reinforced Concrete Shells
11
作者 Sandra Gelbrich Henrik L. Funke Lothar Kroll 《Open Journal of Composite Materials》 2018年第4期161-174,共14页
This paper presents the development and technological implementation of textile reinforced concrete (TRC) shells with integrated functions, such as illumination and light control. In that regard the establishment of m... This paper presents the development and technological implementation of textile reinforced concrete (TRC) shells with integrated functions, such as illumination and light control. In that regard the establishment of material, structural and technological foundations along the entire value chain are of central importance: From the light-weight design idea to the demonstrator and reference object, to the technological implementation for the transfer of the research results into practice. The development of the material included the requirement-oriented composition of a high-strength fine grained concrete with an integrated textile reinforcement, such as carbon knitted fabrics. Innovations in formwork solutions provide new possibilities for concrete constructions. So, a bionic optimized shape of the pavilion was developed, realized by four connected TRC-lightweight-shells. The thin-walled TRC-shells were manufactured with a formwork made of glass-fibre reinforced polymer (GFRP). An advantage of the GFRP-formwork is the freedom of design concerning the formwork shape. Moreover, an excellent concrete quality can be achieved, while the production of the precast concrete components is simple and efficient simultaneously. After the production the new TRC-shells were installed and assembled on the campus of TU-Chemnitz. A special feature of the research pavilions are the LED light strips integrated in the shell elements, providing homogeneous illumination. 展开更多
关键词 TEXTILE reinforced concrete Carbon reinforced concrete TEXTILE reinforced composites Function-Integrated Lightweight Structures Glass-Fibre reinforced Polymer FORMWORK Thin-Walled SHELLS
下载PDF
Fe_(2)O_(3)-MWNTs Composite with Reinforced Concrete Structure as High-performance Anode Material for Lithium-ion Batteries
12
作者 WANG Suhang ZUO Jinxin +4 位作者 LI Yongliang ZHONG Yiming REN Xiangzhong ZHANG Peixin SUN Lingna 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2023年第2期240-245,共6页
A Fe_(2)O_(3)-MWNTs(multi-walled carbon nanotubes)composite with a reinforced concrete structure was fabricated employing a two-step method which involves a sol-gel process followed by high-temperature in situ sinteri... A Fe_(2)O_(3)-MWNTs(multi-walled carbon nanotubes)composite with a reinforced concrete structure was fabricated employing a two-step method which involves a sol-gel process followed by high-temperature in situ sintering.This Fe_(2)O_(3)-MWNTs composite,intended to be used as an anode material for lithium-ion batteries,maintained a reversible capacity as high as 896.3 mA·h/g after 100 cycles at a current density of 100 mA/g and the initial coulombic efficiency reached 75.5%.The rate capabilities of the Fe_(2)O_(3)-MWNTs composite,evaluated using the ratios of capacity at 100,200,500,1000,2000 and 100 mA/g after every 10 cycles,were determined to be 904.7,852.1,759.0,653.8,566.8 and 866.3 mA·h/g,respectively.Such a superior electrochemical performance of the Fe_(2)O_(3)-MWNTs composite is mainly attributed to the reinforced concrete construction,in which the MWNTs function as the skeleton and conductive network.Such a structure contributes to shortening the transport pathways for both Li+and electrons,enhancing conductivity and accommodating volume expansion during prolonged cycling.This Fe_(2)O_(3)-MWNTs composite with the designed structure is a promising anode material for high-performance lithium-ion batteries. 展开更多
关键词 Lithium-ion battery Anode material Fe_(2)O_(3)-multi-walled carbon nanotubes(MWNTs)composite Sol-gel reinforced concrete structure
原文传递
Axial compressive behavior of GFRP‑timber‑reinforced concrete composite columns
13
作者 Fubin Zhang Hu Luo +3 位作者 Jianzhuang Xiao Amardeep Singh Jing Xu Hai Fang 《Low-carbon Materials and Green Construction》 2023年第1期48-64,共17页
本文提出了一种由外层玻璃纤维增强复合材料(GFRP)布、内部填充泡桐木芯和钢筋混凝土组成的组合柱(GTRC柱)。对13个GTRC柱试件进行了轴心受压试验,研究了不同木芯直径、长细比和GFRP层数/铺层角度对其力学性能的影响规律。结果表明,随... 本文提出了一种由外层玻璃纤维增强复合材料(GFRP)布、内部填充泡桐木芯和钢筋混凝土组成的组合柱(GTRC柱)。对13个GTRC柱试件进行了轴心受压试验,研究了不同木芯直径、长细比和GFRP层数/铺层角度对其力学性能的影响规律。结果表明,随着木芯直径的增加,组合柱的延性和耗能能力分别增加了52.6%和21.6%,而极限承载力和初始刚度略有下降。另外,GFRP布显著提高了其极限受压承载能力、刚度、延性和能量耗散能力,分别提高了212.1%、26.6%、64.3%和3820%。此外,考虑到木芯直径的影响,提出了极限受压承载力调整系数。最后,基于力平衡原理和叠加原理,建立了GTRC柱极限承载力理论分析模型,得到了其承载力计算公式。 展开更多
关键词 玻璃纤维增强塑料 木芯 钢筋混凝土 组合柱 轴向受压
原文传递
Numerical simulation of squat reinforced concrete wall strengthened by FRP composite material 被引量:1
14
作者 Ali KEZMANE Said BOUKAIS Mohand Hamizi 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2016年第4期445-455,共11页
The advanced design rules and the latest known earthquakes, have imposed a strengthening of reinforced concrete structures. Many research works and practical achievements of the application of the external reinforceme... The advanced design rules and the latest known earthquakes, have imposed a strengthening of reinforced concrete structures. Many research works and practical achievements of the application of the external reinforcement by using FRP composite materials have been particularly developed in the recent years. This type of strengthening seems promising for the seismic reinforcement of buildings. Among of the components of structures that could affect the stability of the structure in case of an earthquake is the reinforced concrete walls, which require in many cases a strengthening, especially in case where the diagonal cracks can be developed. The intent of this paper is to present a numerical simulation of squat reinforced concrete wall strengthened by FRP composite material (carbon fiber epoxy). The intent of this study is to perform finite element model to investigate the effects of such reinforcement in the squat reinforced concrete walls. Taking advantage of a commercial finite element package ABAQUS code, three-dimensional numerical simulations were performed, addressing the parameters associated with the squat reinforced concrete walls. An elasto-plastic damage model material is used for concrete, for steel, an elastic-plastic behavior is adopted, and the FRP composite is considered unidirectional and orthotropic. The obtained results in terms of displacements, stresses, damage illustrate clearly the importance of this strengthening strategy. 展开更多
关键词 simulation strengthening reinforced concrete wall squat wall FRP composite material DAMAGE ABAQUS
原文传递
钢纤维细石混凝土-钢组合板抗弯性能试验研究
15
作者 王激扬 刘修良 +2 位作者 王树斌 纪恩文 胡志华 《混凝土》 CAS 北大核心 2024年第1期89-94,共6页
钢纤维细石混凝土是一种具有优异力学性能和良好工作性的高性能混凝土复合材料。本试验针对正交异性钢桥面铺装层裂缝病害问题,对4组采用不同钢筋配筋率和保护层厚度的横桥向钢纤维细石混凝土-钢组合桥面板进行了抗弯破坏试验,研究了组... 钢纤维细石混凝土是一种具有优异力学性能和良好工作性的高性能混凝土复合材料。本试验针对正交异性钢桥面铺装层裂缝病害问题,对4组采用不同钢筋配筋率和保护层厚度的横桥向钢纤维细石混凝土-钢组合桥面板进行了抗弯破坏试验,研究了组合板的荷载-挠度关系与裂缝开展特征;用等效截面法计算了开裂应力、裂缝宽度和钢筋应力,验证了钢纤维细石混凝土-钢组合板的抗裂性能。结果表明:60 mm厚钢纤维细石混凝土铺装层在小配筋率(2.6%)和低于规范要求的保护层厚度(15 mm)条件下呈现出多缝开裂的破坏形态,具备较高的延性和开裂应力,满足规范和工程应用的要求。 展开更多
关键词 钢纤维细石混凝土 组合板 抗弯性能 等效截面法 裂缝宽度
下载PDF
CFRP-PCPs复合筋加固钢-混组合梁负弯矩区抗裂试验与理论计算
16
作者 邓宇 凌道远 倪淼 《复合材料科学与工程》 CAS 北大核心 2024年第5期66-75,共10页
为解决钢-混组合梁负弯矩区混凝土板易开裂而造成刚度减弱的行业难题,以预制的CFRP-PCPs(carbon fibre reinforced polymer-prestressed concrete prisms)复合筋作为中支座的腹筋,并以复合筋的数量、预应力张拉水平和截面尺寸为主要参... 为解决钢-混组合梁负弯矩区混凝土板易开裂而造成刚度减弱的行业难题,以预制的CFRP-PCPs(carbon fibre reinforced polymer-prestressed concrete prisms)复合筋作为中支座的腹筋,并以复合筋的数量、预应力张拉水平和截面尺寸为主要参数设计制作了五根复合筋钢-混组合连续梁和一根普通组合连续梁,研究其在单跨单点荷载下负弯矩区的抗裂性能。结果表明:复合筋能显著增强中支座截面刚度,对负弯矩区的裂缝控制能力提升显著;与普通组合梁相比,复合筋梁的开裂荷载提高近30%,裂缝数量与裂缝宽度减少近50%;复合筋面积是提高裂缝控制能力的主要因素,预应力水平和截面尺寸对开裂荷载的影响较弱;复合筋的开裂荷载与预应力水平、面积正相关,其中预应力水平是影响复合筋效用时长的关键因素。基于现有理论和试验数据,本文提出CFRP-PCPs复合筋钢-混组合梁负弯矩区开裂荷载和复合筋的开裂荷载计算公式,计算结果与试验值较为吻合,可为复合筋在钢-混组合梁桥实际工程中应用提供参考。 展开更多
关键词 CFRP-PCPs复合筋 钢-混组合梁 负弯矩区 抗裂性能 复合材料
下载PDF
不同尺度纤维复合增强水泥基材料的抗氯离子渗透性能
17
作者 张勤 解雨璇 +2 位作者 顾仁杰 梁熙 张正 《土木与环境工程学报(中英文)》 CSCD 北大核心 2024年第3期198-206,共9页
为研究不同尺度纤维复合增强水泥基材料的抗氯离子渗透性能,对单掺和复掺碳酸钙晶须、聚乙烯醇(PVA)纤维的水泥基材料分别进行电通量试验、电镜扫描观测及基本力学性能试验,分析不同纤维尺度、掺量及复合比例对水泥基材料抗氯离子渗透... 为研究不同尺度纤维复合增强水泥基材料的抗氯离子渗透性能,对单掺和复掺碳酸钙晶须、聚乙烯醇(PVA)纤维的水泥基材料分别进行电通量试验、电镜扫描观测及基本力学性能试验,分析不同纤维尺度、掺量及复合比例对水泥基材料抗氯离子渗透性能和基本力学性能的影响规律,并基于试验结果给出了多纤维复合增强水泥基材料的氯离子侵蚀深度计算模型。结果表明,不同尺度纤维可在不同结构层次上发挥对水泥基材料的增强作用,使得多纤维复合增强水泥基材料的抗氯离子渗透性能明显优于单一纤维增强水泥基材料;多纤维复合材料的抗压强度与氯离子侵蚀深度及电通量大致呈反比例关系;当复合材料的抗压强度提高13.6%时,其氯离子侵蚀深度和总电通量则分别降低39.1%和44.7%;建立的氯离子侵蚀深度计算模型,可用于多纤维复合增强水泥基材料的抗氯离子渗透和侵蚀性能评估。 展开更多
关键词 纤维增强混凝土 水泥基材料 抗氯离子渗透性能 电通量 抗压强度
下载PDF
圆钢管型钢再生混凝土组合柱滞回性能非线性有限元分析
18
作者 马辉 张国恒 +2 位作者 白恒宇 席嘉诚 赵艳丽 《应用力学学报》 CAS CSCD 北大核心 2024年第1期148-157,共10页
基于圆钢管型钢再生混凝土组合柱低周反复荷载试验研究,采用OpenSees软件对该组合柱进行了滞回性能数值分析,获取了组合柱的滞回曲线及抗震性能指标,并与试验结果进行了比较,验证了组合柱数值模型的合理性。在此基础上,对组合柱的滞回... 基于圆钢管型钢再生混凝土组合柱低周反复荷载试验研究,采用OpenSees软件对该组合柱进行了滞回性能数值分析,获取了组合柱的滞回曲线及抗震性能指标,并与试验结果进行了比较,验证了组合柱数值模型的合理性。在此基础上,对组合柱的滞回性能开展了参数影响分析。结果表明:再生骨料取代率从0增大到100%,组合柱的峰值荷载下降了7.78%,延性略有降低;提高再生混凝土强度、型钢强度及圆钢管强度,对于提升组合柱的承载力及刚度是有利的,但却使组合柱的脆性增大;随着轴压比的增大,组合柱的承载力呈现先上升后下降的趋势,而延性逐渐变差;型钢配钢率从5.54%增至9.99%,组合柱的峰值荷载提高了24.34%,但对于改善组合柱的延性不明显;增大钢管壁厚对组合柱的承载力和延性均是有利的。 展开更多
关键词 钢管再生混凝土 型钢再生混凝土 组合柱 滞回性能 有限元分析
下载PDF
装配式型钢混凝土叠合框架梁连接节点构造设置与安全分析
19
作者 林琳 《佳木斯大学学报(自然科学版)》 CAS 2024年第1期111-114,共4页
住房和城乡建设部印发《“十四五”建筑业发展规划》提出大力发展装配式建筑、推动生产和施工智能化升级的主要任务。而国内目前采用的预制叠合框架梁存在着跨度大自重大吊装成本高、预制梁柱节点位置易发生钢筋碰撞吊装定位难度大等问... 住房和城乡建设部印发《“十四五”建筑业发展规划》提出大力发展装配式建筑、推动生产和施工智能化升级的主要任务。而国内目前采用的预制叠合框架梁存在着跨度大自重大吊装成本高、预制梁柱节点位置易发生钢筋碰撞吊装定位难度大等问题,限制了装配式建筑结构的发展。结合实际工程项目,提出一种新型的装配式型钢混凝土叠合框架梁,并对该叠合梁的构造设置、连接方式及安全性进行分析,从而为装配式框架结构、框架—剪力墙结构等装配式建筑中框架梁的深化设计提供一种新的拆分方案。 展开更多
关键词 装配式建筑 型钢混凝土结构 叠合框架梁 构造设置 安全性分析
下载PDF
NC–UHPC组合梁抗冲击性能的数值研究
20
作者 伍敏 黄于倩 +2 位作者 潘仁胜 金浏 杜修力 《工程科学学报》 EI CSCD 北大核心 2024年第2期354-364,共11页
超高性能混凝土(UHPC)材料已成为极具前景的高性能材料,并在冲击和爆炸等防护工程领域中取得了良好的效果.对于普通钢筋混凝土(NC)梁在受到冲击荷载时较易发生局部冲剪破坏,而纯UHPC梁虽可改善其冲击性能,但高昂的造价限制了其进一步的... 超高性能混凝土(UHPC)材料已成为极具前景的高性能材料,并在冲击和爆炸等防护工程领域中取得了良好的效果.对于普通钢筋混凝土(NC)梁在受到冲击荷载时较易发生局部冲剪破坏,而纯UHPC梁虽可改善其冲击性能,但高昂的造价限制了其进一步的应用.为了实现结构抗冲击性能和经济的平衡,提出UHPC局部替换和包裹的方案改善钢筋混凝土梁的抗冲击性能.本文设计了NC梁、UHPC梁和NC–UHPC组合梁等不同的研究工况,然后对比分析各个试件的抗冲击性能.结果表明:相比普通钢筋混凝土梁,UHPC局部替换方案可以有效的避免梁的局部冲剪破坏,而UHPC包裹在冲击荷载下梁的破坏模式由冲剪破坏转变为弯曲破坏,两种方案均可有效的减少梁跨中的峰值位移和残余位移;UHPC局部替换相较于包裹方案,梁的跨中峰值位移和残余位移较小,且具有更高的跨中承载能力,在实际过程中建议UHPC局部替换长度取大于2倍梁高以避免局部冲剪破坏. 展开更多
关键词 超高性能混凝土 普通钢筋混凝土 组合梁 冲击荷载 冲剪破坏 弯曲破坏
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部